Study on Treatment of Dyeing Wastewater by Fe0-H2O2 System

2014 ◽  
Vol 1048 ◽  
pp. 507-510
Author(s):  
Shan Hong Lan ◽  
Chuan Lu Wang ◽  
Jia Hao Sun ◽  
Heng Zhang

Printing and dyeing wastewater contained difficult biochemical degradation of organic matters. It required advanced treatment after the biochemical treatment. In this paper, effeccts of pH, the amount of iron and hydrogen peroxide, the ratio of iron and hydrogen peroxide and reaction time on the Fe0-H2O2system were studied. The results showed that all the above factors were important to dyeing waste water treatment by Fe0-H2O2system. CODCrremoval efficiency could archive 65% when the initial pH was 3, the iron powder capacity was 1.5g/L,the volume of hydrogen peroxide was 1ml/L, the reaction time was 40 min and the temperature was 30°C.

2014 ◽  
Vol 1010-1012 ◽  
pp. 805-808
Author(s):  
Xiu Wen Wu ◽  
Ping Ma ◽  
Hui Xia Lan ◽  
Heng Zhang ◽  
Shan Hong Lan

The influence of H2O2、addition of Fe2+、pH、reaction time and temperature to advanced treatment effect of printing and dyeing wastewater with Fenton oxidation was studied. The results showed that when the addition of H2O2(the concentration was 30%) was 3mL/L,the addition of FeSO4·7H2O was 1.6g/L,pH was 4,the temperature was about 30°C,reacting time was 35min,the COD removal efficiency achieved above 55%,COD of effluent was below 45mg/L.


2014 ◽  
Vol 1048 ◽  
pp. 503-506
Author(s):  
Hui Xia Lan ◽  
Ping Ma ◽  
Jian Zhang ◽  
Hui Jie Li ◽  
Heng Zhang ◽  
...  

The composition of dyeing wastewater is complicated, after biochemical treatment, the effluent COD is still unable to meet the emission standard. To achieve discharge standard that often require advanced treatment after biochemical. This paper investigated effect of pH, reaction time, ZnO dosage, dosage of H2O2on the effect of dyeing wastewater treatment by photocatalytic-H2O2, the results showed that the reaction time of 15 min, pH of 4, dosage of ZnO was 4 g/L, 30% H2O2dosage was 1 ml/L, the COD removal rate was highest, can reach more than 55%.


2021 ◽  
Vol 261 ◽  
pp. 04005
Author(s):  
Emmanuel Nkudede ◽  
Husseini Sulemana ◽  
Bo Zhang ◽  
Kaida Zhu ◽  
Shan Hu ◽  
...  

Owing to its widespread and persistent usage, methylene blue (MB) is an environmental substance, mostly found in the printing and dyeing industry that raises concerns in the environment recently by posing significant threat to human life and the ecosystem as a whole. Thus, there is the need to effectively manage and treat the wastewater from these industries before reaching to the available water sources. Ozonation treatment is very efficient in treating printing and dyeing wastewater (MB) and can be greatly improved by using micro-bubble technology. Microbubble dissolution is an effective way to improve the rate of ozone mass transfer. To discover these properties, a method was used to improve the mass transfer of ozone microbubbles, which was used to effectively treat simulated printing and dyeing wastewater. We investigated the effects of pH, water temperature, ozone flow, and other conditions on the dissolution and attenuation properties of ozone in methylene blue microbubble solutions. Treatment of simulated printing and dyeing wastewater (methylene blue) was investigated under various initial pH and ozone flow rates. A catalytic exhibition was performed towards the decolorization of methylene blue (MB) concentrations and the corresponding COD removal efficiency. Ozone depletion and pH levels played key roles in MB degradation. Under high pH level of 11.01, the rate of removal of COD was 93.5%. Ozone dosage also has direct effect on COD removal efficiency and decolorization. Higher ozone flow rates, 0.4 L/min and 0.5 L/min recorded more than 94% degradation of COD thus very effective and efficient. Also, ozone flow rates 0.3 L/min, 0.4 L/min and 0.5 L/min with initial pH, 7.03, 6.63 and 6.36 decreased to 3.43, 3.49 and 3.44 after reaction processes which clearly shows that with high ozone dosage, pH reduces considerably.


2011 ◽  
Vol 356-360 ◽  
pp. 498-501
Author(s):  
Wen Jie Jin ◽  
Fan Chao Zeng ◽  
Han Xue ◽  
Ying Wang

A kind of new adsorption material for wastewater treatment was made of fly ash as the main composition, with addition of sodium silicate, cement and pore forming material as the accessory materials, etc. Three kinds of practical wastewater were treated by using the new material, they were printing and dyeing wastewater, papermaking wastewater and coking wastewater, respectively. The results showed that removal COD efficiencies of the three kinds of wastewater were 57.89%, 71.43%, 80%, respectively, removal color efficiencies were 90%, 92%, 92%, respectively. The new developed material was mainly used for advanced treatment of the effluent water after biochemical process. It will be a substitute for activated carbon materials and have preferable application prospect.


2011 ◽  
Vol 415-417 ◽  
pp. 438-441
Author(s):  
Jin Xia Yan ◽  
Dong Fang Li ◽  
Shao Feng Dong

The printing and dyeing wastewater was treated by internal electrolysis method. The results show the chromaticity removal rate was up to 98.53 percent and COD removal rate 85.98 percent under the optimum conditions of wastewater pH 4, reaction time 30 minutes, the electric conductivity 1450μm/cm, the value BOD5/COD increases from 0.34 to 0.51. Moreover, the pH, Fe2+ concentration and absorbance of wastewater changed in the process, the mechanism of that was also analyzed.


2011 ◽  
Vol 331 ◽  
pp. 368-371 ◽  
Author(s):  
Li Ping Wang ◽  
Yu Chuan Guo ◽  
Yi Zhong Chen ◽  
Er Deng Du ◽  
Yong Jing Mao

It is difficult to treat printing and dyeing wastewater, for printing and dying wastewater features complex composition, high chromaticity and many toxic substances.The paper studied the effect of the compound of inorganic and organic coagulant with Fenton reagent on the treatment of printing and dyeing wastewater. The effect of other factors were also investigated, including pH value, flocculants, Fenton reagent and reaction time. The results showed that, under the conditions of room temperature, pH 9, PAFCS dosage 100mg/L, PAMC 4mg/L, pH 4, H2O2 dosage 1.0mL/L, FeSO4•7H2O dosage 150 mg/L, the reaction time 60 min, the CODCr removal was high over 91%, and the color was also significantly removed.


Sign in / Sign up

Export Citation Format

Share Document