Preparation of a New Adsorption Material and its Application in Wastewater Treatment

2011 ◽  
Vol 356-360 ◽  
pp. 498-501
Author(s):  
Wen Jie Jin ◽  
Fan Chao Zeng ◽  
Han Xue ◽  
Ying Wang

A kind of new adsorption material for wastewater treatment was made of fly ash as the main composition, with addition of sodium silicate, cement and pore forming material as the accessory materials, etc. Three kinds of practical wastewater were treated by using the new material, they were printing and dyeing wastewater, papermaking wastewater and coking wastewater, respectively. The results showed that removal COD efficiencies of the three kinds of wastewater were 57.89%, 71.43%, 80%, respectively, removal color efficiencies were 90%, 92%, 92%, respectively. The new developed material was mainly used for advanced treatment of the effluent water after biochemical process. It will be a substitute for activated carbon materials and have preferable application prospect.

2019 ◽  
Vol 32 (3) ◽  
pp. 307-321 ◽  
Author(s):  
Xiaoping Zhang ◽  
Yanhui Li ◽  
Meixiu Li ◽  
Heng Zheng ◽  
Qiuju Du ◽  
...  

Purpose The purpose of this paper is to purify the wastewater in the garment industry. Design/methodology/approach The preparation of the calcium alginate (CA)/activated carbon (AC) composite membrane was achieved by vacuum freeze-drying and the cross-linking reaction between sodium alginate and CaCl2. Effective parameters in the methylene blue (MB) adsorption such as temperature, dose, contact time and pH were discussed. The adsorption properties of the composite membrane were investigated by isotherm, kinetics and thermodynamic analysis. The adsorption equilibrium data were described by the adsorption isotherm Langmuir model and the Freundlich model. The pseudo-first-order, pseudo-second-order and intra-particle diffusion equations were selected to evaluate the kinetics. The thermodynamic study described that the adsorption reaction was spontaneous and exothermic. Findings The AC/CA membrane is an efficient and powerful adsorbent to remove MB in printing and dyeing wastewater, and provides a new idea for the selection of adsorption materials for industrial printing and dyeing wastewater. Practical implications The composite membrane research on CA and AC can provide new ideas for the research of these kinds of materials. Social implications The paper contributes to its wider and convenientapplication in wastewater treatment. Originality/value Studies on the combination of CA and AC into adsorption membranes and for the removal of dyes from printing and dyeing wastewater have not been reported. A novel composite material is provided for treatment dyeing wastewater in garment production. The composite membrane research on CA and AC can provide new ideas for the research of these kinds of materials and contribute to its wider and convenient application in wastewater treatment.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 137-144 ◽  
Author(s):  
K. Miserez ◽  
S. Philips ◽  
W. Verstraete

A number of new technologies for the advanced treatment of wastewater have recently been developed. The oxidative cometabolic transformation by methanotrophs and by nitrifiers represent new approaches in relation to organic carbon. The Biological Activated Carbon Oxidative Filters characterized by thin biofilms are also promising in that respect. Moreover, implementing genetically modified organisms with improved catabolic potential in advanced water treatment comes into perspective. For very refractory effluents chemical support techniques, like e.g. strong chemical oxidation, can be lined up with advanced biology.


2014 ◽  
Vol 1010-1012 ◽  
pp. 805-808
Author(s):  
Xiu Wen Wu ◽  
Ping Ma ◽  
Hui Xia Lan ◽  
Heng Zhang ◽  
Shan Hong Lan

The influence of H2O2、addition of Fe2+、pH、reaction time and temperature to advanced treatment effect of printing and dyeing wastewater with Fenton oxidation was studied. The results showed that when the addition of H2O2(the concentration was 30%) was 3mL/L,the addition of FeSO4·7H2O was 1.6g/L,pH was 4,the temperature was about 30°C,reacting time was 35min,the COD removal efficiency achieved above 55%,COD of effluent was below 45mg/L.


2011 ◽  
Vol 255-260 ◽  
pp. 2736-2739
Author(s):  
Shi Yuan Huang ◽  
Qiang Huang ◽  
Sheng Bing Chen ◽  
Yuan Yuan Gao

The multi-methods of UBF-biological contact oxidation - enhanced coagulation- precipitation - fiber sand filtration has been applied to treatment a dyeing and printing wastewater, because it is with the characteristics of large flow, high CODcr, high chromaticity and toxic substances. The result showed: when the feed wate under the conditions of CODcr, BOD5, SS quality concentrations were 15000mg / L, 250mg / L,> 800mg / L and chromaticity blow 1000 times, effluent water quality can meet grade one of the national integrated wastewater discharge standards (GB8978-1996).


Sign in / Sign up

Export Citation Format

Share Document