Consistent Mesh Segmentation Based on Shape Diameter Function and EM

2014 ◽  
Vol 1049-1050 ◽  
pp. 1417-1420
Author(s):  
Hui Jia ◽  
Guo Hua Geng ◽  
Jian Gang Zhang

3D model segmentation is a new research focus in the field of computer graphics. The segmentation algorithm of this paper is consistent segmentation which is about a group of 3D model with shape similarity. A volume-based shape-function called the shape diameter function (SDF) is used to on behalf of the characteristics of the model. Gaussian mixture model (GMM) is fitting k Gaussians to the SDF values, and EM algorithm is used to segment 3D models consistently. The experimental results show that this algorithm can effectively segment the 3D models consistently.

Author(s):  
Tomo Otagiri ◽  
Masatoshi Ibato ◽  
Tsuyoshi Takei ◽  
Ryutarou Ohbuchi

2003 ◽  
Vol 12 (01) ◽  
pp. 37-56 ◽  
Author(s):  
JEONG-JUN SONG ◽  
FOROUZAN GOLSHANI

We introduce two complementary feature extraction methods for shape similarity based retrieval of 3D object models. The proposed methods lead us to achieve effectiveness and robustness in searching similar 3D models, and eventually support two essential query modes, namely, query by 3D model and query by 2D image. Our feature extraction scheme is inspired by the observation of human behavior in recognizing 3D objects. The process of extracting spatial arrangement from a 3D object can be considered as using human tactile sensation without visual information. On the other hand, the process of extracting 2D features from multiple views can be considered as examining an object by moving the viewing points (or camera positions). We propose a hybrid method of 3D model identification by object-centered feature extraction, which utilizes the Extended Gaussian Image (EGI) surface normal distribution and distance distributions between object surface points and origin. Another technique need in parallel is a hybrid method using view-centered features, which adopts simple geometric attributes such as circularity, rectangularity and eccentricity. To generate a signature for view-centered features, we have measured distances of a feature between different views and constructing histogram of the distance. We also address the fundamental problem of obtaining sample points on an object surface, which is important to extract reliable features from the object model.


2021 ◽  
Vol 29 ◽  
pp. 133-140
Author(s):  
Bin Liu ◽  
Shujun Liu ◽  
Guanning Shang ◽  
Yanjie Chen ◽  
Qifeng Wang ◽  
...  

BACKGROUND: There is a great demand for the extraction of organ models from three-dimensional (3D) medical images in clinical medicine diagnosis and treatment. OBJECTIVE: We aimed to aid doctors in seeing the real shape of human organs more clearly and vividly. METHODS: The method uses the minimum eigenvectors of Laplacian matrix to automatically calculate a group of basic matting components that can properly define the volume image. These matting components can then be used to build foreground images with the help of a few user marks. RESULTS: We propose a direct 3D model segmentation method for volume images. This is a process of extracting foreground objects from volume images and estimating the opacity of the voxels covered by the objects. CONCLUSIONS: The results of segmentation experiments on different parts of human body prove the applicability of this method.


Author(s):  
M. Abdelaziz ◽  
M. Elsayed

<p><strong>Abstract.</strong> Underwater photogrammetry in archaeology in Egypt is a completely new experience applied for the first time on the submerged archaeological site of the lighthouse of Alexandria situated on the eastern extremity of the ancient island of Pharos at the foot of Qaitbay Fort at a depth of 2 to 9 metres. In 2009/2010, the CEAlex launched a 3D photogrammetry data-gathering programme for the virtual reassembly of broken artefacts. In 2013 and the beginning of 2014, with the support of the Honor Frost Foundation, methods were developed and refined to acquire manual photographic data of the entire underwater site of Qaitbay using a DSLR camera, simple and low cost materials to obtain a digital surface model (DSM) of the submerged site of the lighthouse, and also to create 3D models of the objects themselves, such as statues, bases of statues and architectural elements. In this paper we present the methodology used for underwater data acquisition, data processing and modelling in order to generate a DSM of the submerged site of Alexandria’s ancient lighthouse. Until 2016, only about 7200&amp;thinsp;m<sup>2</sup> of the submerged site, which exceeds more than 13000&amp;thinsp;m<sup>2</sup>, was covered. One of our main objectives in this project is to georeference the site since this would allow for a very precise 3D model and for correcting the orientation of the site as regards the real-world space.</p>


Author(s):  
D. Einaudi ◽  
A. Spreafico ◽  
F. Chiabrando ◽  
C. Della Coletta

Abstract. Rebuilding the past of cultural heritage through digitization, archiving and visualization by means of digital technology is becoming an emerging issue to ensure the transmission of physical and digital documentation to future generations as evidence of culture, but also to enable present generation to enlarge, facilitate and cross relate data and information in new ways. In this global effort, the digital 3D documentation of no longer existing cultural heritage can be essential for the understanding of past events and nowadays, various digital techniques and tools are developing for multiple purposes.In the present research the entire workflow, starting from archive documentation collection and digitization to the 3D models metrically controlled creation and online sharing, is considered. The technical issues to obtain a detail 3D model are examined stressing limits and potentiality of 3D reconstruction of disappeared heritage and its visualization exploiting three complexes belonging to 1911 Turin World’s Fair.


Author(s):  
Ryuji Nakada ◽  
Masanori Takigawa ◽  
Tomowo Ohga ◽  
Noritsuna Fujii

Digital oblique aerial camera (hereinafter called “oblique cameras”) is an assembly of medium format digital cameras capable of shooting digital aerial photographs in five directions i.e. nadir view and oblique views (forward and backward, left and right views) simultaneously and it is used for shooting digital aerial photographs efficiently for generating 3D models in a wide area. &lt;br&gt;&lt;br&gt; For aerial photogrammetry of public survey in Japan, it is required to use large format cameras, like DMC and UltraCam series, to ensure aerial photogrammetric accuracy. &lt;br&gt;&lt;br&gt; Although oblique cameras are intended to generate 3D models, digital aerial photographs in 5 directions taken with them should not be limited to 3D model production but they may also be allowed for digital mapping and photomaps of required public survey accuracy in Japan. &lt;br&gt;&lt;br&gt; In order to verify the potency of using oblique cameras for aerial photogrammetry (simultaneous adjustment, digital mapping and photomaps), (1) a viewer was developed to interpret digital aerial photographs taken with oblique cameras, (2) digital aerial photographs were shot with an oblique camera owned by us, a Penta DigiCAM of IGI mbH, and (3) accuracy of 3D measurements was verified.


2018 ◽  
Vol 9 (18) ◽  
pp. 66
Author(s):  
Borja Javier Herráez ◽  
Eduardo Vendrell

<p>Advances in three-dimensional (3D) acquisition systems have introduced this technology to more fields of study, such as archaeology or architecture. In the architectural field, scanning a building is one of the first possible steps from which a 3D model can be obtained and can be later used for visualisation and/or feature analysis, thanks to computer-based pattern recognition tools. The automation of these tools allows for temporal savings and has become a strong aid for professionals, so that more and more methods are developed with this objective. In this article, a method for 3D mesh segmentation focused  on  the representation  of  historic  buildings  is  proposed.  This  type  of  buildings is characterised  by  having singularities  and features in  façades, such  as  doors  or  windows. The  main  objective  is  to  recognise  these  features, understanding them as those parts of the model that differ from the main structure of the building. The idea is to use a recognition algorithm for planar faces that allows users to create a graph showing the connectivity between them, therefore allowing the reflection of the shape of the 3Dmodel. At a later step, this graph is matched against some pre-defined graphs that  represent  the  patterns  to  look  for. Each  coincidence  between  both  graphs  indicate  the  position  of  one  of  the characteristics sought. The developed method has proved to be effective for feature detection and suitable for inclusion in architectural surveying applications.</p>


2021 ◽  
Author(s):  
Moataz Dowaidar

Mesenchymal stem cells (MSCs) have been a new research focus for cancer treatment. Future cancer sufferers will considerably profit from their use in the future. Tumor-directed migratory and integration capacities of MSCs are exceptional, making them potential carriers for the delivery of anticancer medicines, notably cytokines. Their usage in the clinic has lasted around 10 years. The use of mesenchymal stem cells (MSCs) to create successful cancer treatments has been demonstrated in everything from animal models to human studies.


Author(s):  
Agnieszka Chmurzynska ◽  
Karolina Hejbudzka ◽  
Andrzej Dumalski

During the last years the softwares and applications that can produce 3D models using low-cost methods have become very popular. What is more, they can be successfully competitive with the classical methods. The most wellknown and applied technology used to create 3D models has been laser scanning so far. However it is still expensive because of the price of the device and software. That is why the universality and accessibility of this method is very limited. Hence, the new low cost methods of obtaining the data needed to generate 3D models appeare on the market and creating 3D models have become much easier and accessible to a wider group of people. Because of their advantages they can be competitive with the laser scanning. One of the methods uses digital photos to create 3D models. Available software allows us to create a model and object geometry. Also very popular in the gaming environment device – Kinect Sensor can be successfully used as a different method to create 3D models. This article presents basic issues of 3D modelling and application of various devices, which are commonly used in our life and they can be used to generate a 3D model as well. Their results are compared with the model derived from the laser scanning. The acquired results with graphic presentations and possible ways of applications are also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document