hvof spray
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 3)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
pp. 088532822110225
Author(s):  
Komang W Widantha ◽  
Eddy A Basuki ◽  
Erie Martides ◽  
Budi Prawara

Hydroxyapatite (HA) coatings have been widely used to improve biocompatibility of metal alloys. This paper discusses the effect of hydroxyapatite (HA) and HA/alumina coated NiTi on their corrosion and dissolution behavior in Phosphate Buffer Saline (PBS) and Ringer’s lactate solutions. The HA was synthesized from biogenic method and used as initial powder in High-Velocity Oxygen Fuel (HVOF) spray technique for the deposition of two coating types, fully HA and HA + 15 wt.% alumina composite coating. The as-synthesized HA had irregular porous structure with relatively low Ca/P ratio of 1.52. Tafel polarization curves obtained from electrochemical test had showed that both coatings increased the corrosion resistance of the NiTi substrates significantly. The ICP-MS analysis results that indicated a low nickel dissolved in both solutions after immersion in 21 days had supported these findings. The nickel levels in the solutions from all samples, either bared substrate or coated samples, in fact below the maximum limit for allergies of the human body. Immersion testing showed the stability of HA and HA/alumina layers as a barrier which maintains its morphology in PBS solution but slightly changed in Ringers.





Author(s):  
Chang Li ◽  
Xing Gao ◽  
Dacheng Zhang ◽  
Hexin Gao ◽  
Xing Han ◽  
...  


Author(s):  
Alok Kumar ◽  
◽  
R.C. Singh ◽  
Ranganath Singari

Corrosion and Wear, or a combination of both, are the main causes of degradation of metals used in the various industrial sectors. Degradation of the metals can be slowed down by adding a layer of resistant coating on the metal surface. This coating separates the base metal from a corrosive environment, reduces wear, and improves the appearance of the metal. The workpiece after coating becomes a composite that has properties far better than the substrate alone. There are various coating techniques, HVOF is one of the most important and widely used processes to protect the metals from wear, corrosion by providing hard and dense coatings. WC coating done by the high-velocity oxy-fuel (HVOF) spray method is the widely used method for providing a layer of corrosive resistance to a wide range of materials that are used in many different industries. In this study, Tungsten carbide (WC-12CO) Coating, HVOF Spray method was studied in great detail. Tungsten Carbide coating was done on a SUS400 Stainless steel substrate using HVOF Spray Process. An, Experiment was done to analyze the various effect of different parameters namely, oxygen rate, propane (fuel) rate, powder rate, spray distance on hardness, and surface roughness of a SUS 400 Stainless Steel substrate. Process optimization was done by using Taguchi and ANOVA methods. It was found that achieving maximum hardness was greatly dependent on propane (fuel) rate followed by powder rate, spray distance, and oxygen rate. The hardness decreases with the increasing fuel rate. And, achieving minimum surface roughness was greatly dependent on spray distance followed by oxygen rate, propane (fuel) rate, powder rate. Surface Roughness increases with increasing spray distance.





2020 ◽  
Vol 854 ◽  
pp. 117-125
Author(s):  
Văn Chien Dinh ◽  
Tuan Hai Nguyen ◽  
Khac Linh Nguyen

Nowadays, thermal spray coatings are used to enhance mechanical properties of the material. One of the technologies used to produce thermal spray coating is HVOF spray technology. This is the most advanced and modern technology which has been widely used in the industry due to its flexibility and ability to create coatings with better adhesion in comparison with other thermal spray methods. This article presents some empirical findings from applying the 67Ni18Cr5Si4B alloy powder coating onto C 45 steel shaft by HVOF spray technology. It also analyzes the influence of some technological parameters on the adhesion of the coating. As a result, the parameters of HVOF spray technology are obtained suitable for recovering worn axis-sized workpieces.



2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Pankaj Chhabra ◽  
Manpreet Kaur

Abstract Wear and surface damage of tools (die materials) in the hot metal forming industry is a critical problem observed and is producing an adverse effect on the process economy. The problem occurs when tool and workpiece interact at higher temperatures. However, the research related to the wear and friction of dies is still lacking. In the present investigation, tribological (wear and friction) studies were conducted with an aim to explore the potential of Cr3C2–NiCr surface coating. The high-velocity oxy-fuel (HVOF) spray technique was used to formulate the coatings. The microhardness, surface roughness, bond strength, and porosity of the coated specimens were found and analyzed. Subsequently, elevated-temperature wear and friction study of the uncoated and coated specimens were done in the laboratory. The study was conducted at 25 N and 50 N loads. The coated specimens showed an increase in wear resistance at all test parameters. The lowest value of coefficient of friction (COF) and the specific wear-rate for the coated specimens were observed at 400 °C. Wear mechanisms were studied by the scanning electron microscopy (SEM) technique. The wear mechanisms were observed to be adhesive in nature at room temperatures and the combination of abrasive/oxidative/adhesive in nature at higher temperatures for the Cr3C2–NiCr-coated specimens.



Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 187 ◽  
Author(s):  
Zhidan Zhou ◽  
Junchao Shang ◽  
Yongxiong Chen ◽  
Xiubing Liang ◽  
Baolong Shen ◽  
...  

Shot peening was used synchronously to improve Fe-based amorphous coating performance by delivering ZrO2 ceramic particles into a low-temperature region of a flame during the high velocity oxygen flame (HVOF) spray process. The coating became denser, and its hardness became higher via the new process. Moreover, the compressive residual stress was induced by shot peening. The results from the dry friction test indicated that the coating’s wear resistance was enhanced obviously. The wear mechanism of coatings with and without shot peening is an abrasive wear combined with an oxidation wear at wear test conditions of a low load and a low frequency. The coating with the best wear resistance did not have the strongest microhardness but had the highest compressive residual stress. The compressive residual stress had a significant positive influence on the wear resistance at a low frequency, while its effect is weakened at a high frequency.



2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040041
Author(s):  
Hairong Sun ◽  
Jinpeng Yu ◽  
Guoqing Gou ◽  
Wei Gao

Nanostructured WC-17Co, 2C-12Co coatings and conventional WC-17Co coating were prepared by High Velocity Oxygen Flame (HVOF) spray technique. The elastic modulus, fracture toughness and crack spread path were studied. The residual stress, different phases, microstructure from surface to the depth of coatings were also analyzed. While the nanostructured WC-12Co coating showed the highest elastic modulus, the nanostructured WC-17Co coating has the highest fracture toughness. The compressive residual stress of the nanostructured coatings was higher than the conventional coating. Both WC and W2C phases showed compressive residual stress, but Co6W6C phase showed tensile stress. The distribution of residual stress showed that the stress is the lowest at the surface and the highest close to the interface.



2019 ◽  
Vol 56 (11) ◽  
pp. 719-730
Author(s):  
H. Schnarr ◽  
W. Motl


Sign in / Sign up

Export Citation Format

Share Document