Preparation and Mechanical Properties of HA/PHB Composites

2010 ◽  
Vol 105-106 ◽  
pp. 104-107 ◽  
Author(s):  
Zhi Qi Zhuo ◽  
Li Min Dong ◽  
Cheng Wang ◽  
Qing Feng Zan ◽  
Jie Mo Tian

This paper focuses on the influence on the mechanical properties of hydroxyapatite / poly-hydroxybutyrate (HA / PHB) composites by different HA contents, and the effect of Silane coupling agent on improving the interface of HA/PHB composite materials. The HA/PHB composites were prepared by ball milling, hot-pressing, the HA content were 0, 5, 10, 15, 20 and 30wt%, respectively. Silane coupling agent was used for HA surface treatment in HA/PHB composites to compare with not having HA surface treatment in HA/PHB composite materials. The impact strength and flexural strength of HA / PHB composites were tested, and the microstructure of the fracture surface was observed by SEM. The results showed that HA could enhance the bending strength of HA/PHB composites. With HA content increased, the bending strength increased first and then decreased, when the HA content was 10wt%, the maximum bending strength reached 32.74MPa, increased about 41% comparing with pure PHB. Silane coupling agent can improve the interface of HA / PHB, then enhance the mechanical strength. When the HA content was 15wt%, the maximum bending strength reached 46.6MPa, Increased about 56% comparing with the same proportion of untreated HA/PHB composite material, and about double comparing with pure PHB.

2012 ◽  
Vol 200 ◽  
pp. 321-324 ◽  
Author(s):  
Zhao Xia Wang ◽  
De Gao ◽  
Wen Cai Xu

Mechanical properties of the calcium-plastic composite have a great influence on the containers. The main factors affecting the mechanical properties are the process and material formulations. This paper mainly describes its impact of the addition of coupling agent. Under the usage of analysis of variance on single factor experiment, the mechanical properties of the calcium carbonate-plastic composite with three different coupling agents (silane, titanate and aluminate) were studied in the same test conditions. The results show that: The type and quantity of the coupling agent effect a lot on the mechanical properties of the composite. The silane coupling agent is the most suitable for calcium carbonate-plastic composite packaging materials, and the compatibility of calcium carbonate and polyethylene can be improved. When the silane coupling agent was at a 2.25 wt. % concentration, the tensile and flexural strength were improved obviously, especially the tensile strength increased by 23.24%, but the impact strength improved slightly.


2011 ◽  
Vol 55-57 ◽  
pp. 392-396
Author(s):  
Hui Li ◽  
Zhuo Tong ◽  
Fang Cheng ◽  
Xin Gong Li

Prepare composite materials with recycled fibers from waste newspaper and PLA by inject-molding process, and study on recycled fiber of the modified-property treatment of silane coupling agent and alkali deinking treatment influence properties of composite materials. It is found out that, recycled fibers under the modified-property treatment of silane coupling agent and under alkali deinking treatment can effectively improve compatibility between recycled fibers and PLA, and improve mechanical properties and water absorbency of composite materials.


2007 ◽  
Vol 361-363 ◽  
pp. 531-534 ◽  
Author(s):  
X.B. Yang ◽  
X. Lu ◽  
J.J. Ge ◽  
Jie Weng

Silanization of hydroxyapatite was employed to improve the bonding between hydroxyapatite and polycaprolactone. FTIR of HA after silanization showed that new peaks attributed to silane do exist. The increase of melting and crystallization temperatures of silaned composites shown from DSC implied that there exists much stronger bonding between PCL and silaned HA particles. Fracture surface of composites after tensile testing observed by using SEM showed that silaned HA particles dispersed much evenly and coalesced compactly in PCL matrix, suggesting that silaned HA particles had good compatibility with PCL. The tensile strength and modulus increased from 16.81 MPa and 239.21 MPa to 20.49 MPa and 539.57 MPa, respectively.


2012 ◽  
Vol 268-270 ◽  
pp. 127-133
Author(s):  
Chen Zheng ◽  
Yan Yan Xu ◽  
Takahiko Kawai ◽  
Shin-ichi Kuroda

In order to improve the properties and the processability of kenaf fiber (KF) / polystyrene (PS) composites, the newly synthesized polymeric silane coupling agent (CA) was utilized and evaluated. KFs were reacted with CA in the melt system and in the solvent system. The composites reinforced by the modified KF showed enhanced mechanical properties compared with those reinforced by the unmodified KF. The effect was especially remarkable when the KF was modified with CA in the solvent system. As the CA content increases, the surface of KF recovered from the composites showed the higher Si / C ratio indicating the good reaction between KF and CA. The modified composites also showed a remarkable reduction in water uptake rate.


2011 ◽  
Vol 675-677 ◽  
pp. 361-364 ◽  
Author(s):  
Yang Zhao ◽  
Jian Hui Qiu ◽  
Hui Xia Feng ◽  
Guo Hong Zhang ◽  
Liang Shao

Rice straw/Poly(butylene succinate)(PBS) composites were prepared by injection molding machine. The influence of content and particle size of rice straw on the mechanical properties of composites indicated that with the increase of rice straw content the tensile strength and fracture strain of the composites was decreased. With the same content of rice straw, the smaller particle size, the more obvious decreased. The influence of dosage of silane coupling agent(SCA) on the composites was studied, the result indicated that with the increase of SCA content, the interface of composite materials significantly improved, the Young’s modulus increased 362% after rice straw was treated by SCA. Thermal analysis showed that the adding of coupling agent didn’t undermine the thermodynamic stability of the composites.


Sign in / Sign up

Export Citation Format

Share Document