Dynamic Mechanical Properties of CNTs/MoSi2 Composite Material

2010 ◽  
Vol 105-106 ◽  
pp. 75-78
Author(s):  
Guang Ping Zou ◽  
Zhong Liang Chang ◽  
Ying Jie Qiao

Carbon nanotubes (CNTs) are good reinforcement of composite materials, through add appropriate amount of carbon nanotubes to MoSi2 can be improve the strength and toughness of MoSi2. In this paper, the material of CNTs/MoSi2 was made through vacuum hot pressing technology. And the split hopkison press bar (SHPB) technology was used for testing the dynamic mechanical properties of CNTs/MoSi2 composite material which has different proportion of CNTs. In the SHPB experiment, in order to get better waveforms, the waveform shaping technology was used for improving the waveform quality, and also the strain gauge technology was used for testing the real strain of the specimen in the dynamic loading process. Through calculating, the dynamic stress-strain curves which under different high strain rate are given. At the same time, the strength, deformation and other test results are analyzed, and also compared them with the static compression experiment results of the CNTs/MoSi2 specimen which is tested by the electronic universal testing machine, and then obtained the dynamic performance of CNTs/MoSi2 composite material.

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1406
Author(s):  
Daoyuan Chen ◽  
Mingjin Ding ◽  
Zhixiong Huang ◽  
Yanbing Wang

In order to study the dynamic mechanical properties of styrene–acrylic latex with a core/shell structure, a variety of latexes were synthesized by semi-continuous seeded emulsion polymerization based on “particle design” with the same material. The latexes were characterized by rotary viscosimeter, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), dynamic mechanical analysis (DMA), and universal testing machine. The effects of difference at the glass transition temperature (Tg) of core and shell and the introduction of the “transition layer” on the damping and mechanical properties of latex film were studied. The results indicate that as the Tg of core and shell gets closer, the better the compatibility of core and shell, from phase separation to phase continuity. Furthermore, the introduction of the “transition layer” can effectively improve the tensile strength and tan δ (max) of the latex film. The tensile strength and maximum loss factor (f = 1 Hz) of latex with the “transition layer” increased by 36.73% and 29.11% respectively compared with the latex without the “transition layer”. This work provides a reference for the design of emulsion for damping coating.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 44 ◽  
Author(s):  
Changming Zhang ◽  
Anle Mu ◽  
Yun Wang ◽  
Hui Zhang

In order to investigate the static and dynamic mechanical properties of TC18 titanium alloy, the quasi-static stress–strain curve of TC18 titanium alloy under room temperature was obtained by DNS 100 electronic universal testing machine (Changchun Institute of Mechanical Science Co., Ltd., Changchun, China). Meanwhile, the flow stress–strain curves under different temperatures and strain rates are analyzed by split Hopkinson pressure bar (SHPB) device with synchronous assembly system. On the basis of the two experimental data, the JC constitutive model under the combined action of high temperature and impact load is established using the linear least squares method. The results show the following: the yield strength and flow stress of TC18 titanium alloy increase slowly with the increase of the strain rate, and the strain value corresponding to the yield strength is reduced. With the increase of strain, the flow stress increases at first and then decreases at different temperatures. The strain value corresponding to the transition point rises with the temperature increase, and the corresponding stress value remains basically unchanged. With the increase of experimental temperature, the flow stress shows a downward trend, and the JC constitutive model can predict the plastic flow stress well.


2020 ◽  
Vol 22 ◽  
pp. 100722
Author(s):  
Jialiang Wang ◽  
Sufen Dong ◽  
Ashraf Ashour ◽  
Xinyue Wang ◽  
Baoguo Han

2011 ◽  
Vol 364 ◽  
pp. 181-185 ◽  
Author(s):  
Firdaus Omar Mohd ◽  
Md Akil Hazizan ◽  
Zainal Arifin Ahmad

Filler-related characteristic such as particle size, shape and geometry are essential factors that need to be considered during the evaluation of the material’s performance especially in the area of particle filled composites. However, there is limited number of works are reported on this particular issue under high strain rate condition. Based on this concern, the paper presents an experimental results on the effect of particle sizes towards rate sensitivity and dynamic compressive properties of polypropylene/silica nanocomposites across strain rate from 10-2to 10-3s-1. The composite specimens were tested using universal testing machine for static loading and a compression split Hopkinson pressure bar apparatus for dynamic loading. Results show that, the stiffness and strength properties of polypropylene/silica nanocomposites were affected by the size of silica particles. However, the magnitudes of changed are somehow different between micro and nanosizes. On the other hand, particle size also plays a major contribution towards sensitivity of the polypropylene/silica nanocomposites where the smaller the reinforcement sizes, the less sensitive would be the composites. Overall, it is convenience to say that the particle size gives significant contribution towards rate sensitivity and dynamic mechanical properties of polypropylene/silica nanocomposites.


2021 ◽  
Author(s):  
Chuanzhi Jing ◽  
Jilai Wang ◽  
Chengpeng Zhang ◽  
Yan Sun ◽  
Zhenyu Shi

Abstract The dynamic mechanical properties of metallic materials have been extensively investigated at the macro-scale in terms of deformation mechanisms, strain rate strengthening, and fracture mechanisms. However, the dynamic mechanical properties affected by size effects at micro/meso-scales have rarely been investigated. To explore the size effects on the dynamic mechanical properties at micro/meso-scales, the experiments of quasi-static compression and SHPB were carried out using oxygen-free, high-conductivity (OFHC) copper with different geometrical and grain sizes. The experimental results show that the quasi-static and dynamic mechanical properties of OFHC copper are affected by size effects at micro/meso-scales. In particular, OFHC copper exhibits strain rate strengthening effects at the micro/meso-scales, and the presence of micro-cracks was observed in the SHPB experimental specimens. The J-C constitutive model based on the surface layer model is proposed and the analysis of the average relative error of the modified model and the original constitutive model is performed. Finite element analysis was carried out based on the modified J-C model and the original model, and the results show that the modified J-C model was in good agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document