The Effect of Heating Process on Strength and the Original Austenite Grain Size of Hot Forming Parts

2014 ◽  
Vol 1063 ◽  
pp. 28-31
Author(s):  
Kuan Hui Hu ◽  
Xiang Dong Liu ◽  
Guan Wen Feng ◽  
Rong Dong Han

Strength, microstructure and austenitic grain size of a hot formed steel WHT1300HF after simulative hot stamping were studied by using universal testing machine for materials and optical microscopy. The results show that the yield strength of the hot stamping parts presented the tendency of earlier decrease and later increase with the extension of holding time, tensile strength was first reduced and then hold above 1400 MPa. In addition, the microstructure of the hot stamping parts was lath martensite, and martensite lath length and packet width increases with the heating temperature increased from 850 °C to 1050 °C. Especially, the effect of heat temperature on the original austenite grain size was more obvious, such as the austenite grains grew up quickly with the increase of heating temperature, and the original austenite grain diameter was 37.8 μm when the temperature reached 1050 °C.

2020 ◽  
Vol 837 ◽  
pp. 74-80
Author(s):  
Jun Yuan ◽  
Zhen Yu Han ◽  
Yong Deng ◽  
Da Wei Yang

In view of the special requirements of rails to ensure the safe and stable operation of Railways in China, the formation characteristics of austenite grains in high carbon rail are revealed through industrial exploration, the process of industrial rail heating and rolling is simulated, innovative experimental research methods such as different heating and heat treatment are carried out on the actual rails in the laboratory. Transfer characteristics of austenite grain size, microstructures and key properties of high carbon rail during the process are also revealed. The results show that the austenite grain size of industrial produced U75V rail is about 9.0 grade. When the holding temperature is increased from 800 C to 1300 C, the austenite grain size of high carbon rail steel decreases, the austenite grain are gradually coarsened, and the tensile strength increases slightly. The tensile strength is affected by the heating temperature. With the increase of heating temperature, the elongation and impact toughness of high carbon rail decrease. The heating temperature of high carbon rail combined with austenite grain size shows that the heating temperature has a great influence on austenite grain size, and has the most obvious influence on the toughness of high carbon rail.


2020 ◽  
Vol 299 ◽  
pp. 482-486
Author(s):  
Mikhail V. Maisuradze ◽  
Maksim A. Ryzhkov

The high strength silicon steel HY-TUF, applied for manufacturing of the heavy loaded aerospace and engineering parts, was investigated. The effect of the heating temperature in the range 900...1000 °C on the austenite grain size was studied. The steel under consideration had a significant scatter of the austenite grain size. The most intensive growth of the austenite grains was observed in the temperature range 975...1000 °C.


2019 ◽  
Vol 944 ◽  
pp. 357-363
Author(s):  
Xiao Dong Zhang ◽  
Dian Xiu Xia ◽  
Shou Ren Wang

The effect of austenitizing temperature on the quenching microstructure and properties of 51CrV4 steel was studied. The results show that with the increase of austenitizing temperature, the austenite grains grow gradually. After quenching, the hardness increased first and then decreased, and the strength increased first and then decreased after tempering at 460°C. When the austenitizing temperature was 880°C, the austenite grains were fine and uniform, about 16μm, the martensite structure was dense, the strength and hardness reached maximum. When the austenitizing temperature was 910°C, the decarburization phenomenon was obvious, and the strength, hardness and plasticity of the test steel decreased obviously. When the austenitizing temperature exceeded 910°C, the austenite grains grow sharply and some grains were abnormally coarse. The austenite grain size reached 20μm and the microstructure was coarser at austenitizing temperature of 950°C. Therefore, in order to ensure uniform grain size and no decarburization under the premise of complete austenitization, the best austenitizing temperature of 51CrV4 steel for good properties is 880°C.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 988 ◽  
Author(s):  
Liangyun Lan ◽  
Zhiyuan Chang ◽  
Penghui Fan

The simulation welding thermal cycle technique was employed to generate different sizes of prior austenite grains. Dilatometry tests, in situ laser scanning confocal microscopy, and transmission electron microscopy were used to investigate the role of prior austenite grain size on bainite transformation in low carbon steel. The bainite start transformation (Bs) temperature was reduced by fine austenite grains (lowered by about 30 °C under the experimental conditions). Through careful microstructural observation, it can be found that, besides the Hall–Petch strengthening effect, the carbon segregation at the fine austenite grain boundaries is probably another factor that decreases the Bs temperature as a result of the increase in interfacial energy of nucleation. At the early stage of the transformation, the bainite laths nucleate near to the grain boundaries and grow in a “side-by-side” mode in fine austenite grains, whereas in coarse austenite grains, the sympathetic nucleation at the broad side of the pre-existing laths causes the distribution of bainitic ferrite packets to be interlocked.


Author(s):  
Sebastian Gnapowski ◽  
Elżbieta Kalinowska- Ozgowicz ◽  
Mariusz Sniadkowski ◽  
Aleksandra Pietraszek

This paper presents the results of investigations of the effects of hot deformation parameters in compression investigation on the austenite grain size in HSLA steel (0.16% C, 0.037% Nb, 0.004% Ti, 0.0098% N). The axisymmetric compression investigations were performed on cylindrical investigation specimens of d=1.2 using the Gleeble 3800 simulator. The strain rate=1s-1÷15.9s-1 and strain degree ε=1.2. Before deformation, the research specimens were austenitized at TA = 1100 ÷ 1250 °C. Metallographic observations of the primary austenite grains were conducted with an optical microscope, while the structure of dynamically recrystallized austenite, inherited by martensite, was examined by EBSD technique using a scanning electron microscope. Based on the analysis of investigation results, it was found that the size of dynamically recrystallized austenite grains in HSLA steel were clearly affected by hot compression parameters. In contrast, no significant impact of austenitising temperature on their size was found.


2011 ◽  
Vol 66-68 ◽  
pp. 1797-1801
Author(s):  
Zhi Xia Qiao ◽  
Dan Tian Zhang ◽  
Yong Chang Liu ◽  
Ze Sheng Yan

The effect of austenization treatment temperature on the martensitic transformation in the 30CrNi3MoV ultra-high-strength steel was investigated by means of dilatometric measurements and microstructural observations. The results showed that the coarsening temperature of austenite grains in the 30CrNi3MoV steel is raised to about 1000°C due to the inhibition to the migration of austenite grain boundaries, not only by the fine and disperse vanadium carbides, but also by the solute atoms adsorbed near the boundaries. The martensite obtained in 30CrNi3MoV samples with different austenization temperatures varied in the structural constituent, as well as in the size. The martensite microstructures obtained in the samples austenized at relatively low temperatures were composed of both lath martensite and acicular martensite and they are small in size. Yet the microstructures in the 30CrNi3MoV samples with relatively high austenization temperatures were occupied mostly by coarse lath martensite. For the 30CrNi3MoV steel, the austenization heating temperature should be kept below 1000°C in order to achieve the optimum mechanical property.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Asiful Hossain Seikh ◽  
Mahmoud S. Soliman ◽  
Abdulhakim AlMajid ◽  
Khaled Alhajeri ◽  
Waleed Alshalfan

The aim of the present work is to investigate the microstructural behavior of austenite grain size (AGS) during the reheating process of two different API steel grades (X65 and X70). The steel samples were austenitized at 1150°C, 1200°C, and 1250°C for various holding times from 10 to 60 minutes and quenched in ice water. The samples were then annealed at 500°C for 24 hours to reveal the prior AGS using optical microscopy. It was noticed that the AGS in X65 grade is coarser than that of X70 grade. Additionally, the grain size increases with increasing the reheating temperature and time for both steels. The kinetics of grain growth was studied using the equationdn-d0n=Atexp-Q/RT, wheredis the measured grain size,dois the initial grain size,nis the grain size exponent,tis the heating time,Tis the heating temperature,Qis the activation energy,Ris the gas constant, andAis a constant. To characterize the grain growth process the values ofn,Q, andAwere determined. Good agreement is obtained between the prediction of the model and the experimental grain size values.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2356
Author(s):  
Yina Zhao ◽  
Yinli Chen ◽  
He Wei ◽  
Jiquan Sun ◽  
Wei Yu

The partitioning and diffusion of solute elements in hot rolling and the effect of the partitioning and diffusion on the ferrite-bainite banding formation after hot rolling in the 20CrMnTi steel were experimentally examined by EPMA (electron probe microanalysis) technology and simulated by DICTRTA and MATLAB software. The austenite grain size related to the hot rolling process and the effect of austenite grain size on the ferrite-bainite banding formation were studied. The results show that experimental steel without banding has the most uniform hardness distribution, which is taken from the edge of the cast slab and 1/4 diameter position of the cast slab, heating at 1100 °C for 2 h and above 1200 °C for 2–4 h during the hot rolling, respectively. Cr, Mn, and Si diffuse and inhomogeneously concentrate in austenite during hot rolling, while C homogeneously concentrates in austenite. After the same hot rolling process, ΔAe3 increases and ferrite-bainite banding intensifies with increasing initial segregation width and segregation coefficient K of solute elements. Under the same initial segregation of solute elements, ΔAe3 drops and ferrite-bainite banding reduces with increasing heating temperature and extension heating time. When ΔAe3 drops below 14 °C, ferrite-bainite banding even disappears. What is more, the austenite grain size increases with increasing heating temperature and extension heating time. When the austenite grain size is above 21 μm, the experimental steel will not appear to have a banded structure after hot rolling.


Sign in / Sign up

Export Citation Format

Share Document