Vision-Based Trajectory Generation for a Two-Link Robotic Arm Using Quadtree Decomposition and Curve Smoothing

2010 ◽  
Vol 108-111 ◽  
pp. 1439-1445
Author(s):  
Shahed Shojaeipour ◽  
Sallehuddin Mohamed Haris ◽  
Ehsan Eftekhari ◽  
Ali Shojaeipour ◽  
Ronak Daghigh

In this article, the development of an autonomous robot trajectory generation system based on a single eye-in-hand webcam, where the workspace map is not known a priori, is described. The system makes use of image processing methods to identify locations of obstacles within the workspace and the Quadtree Decomposition algorithm to generate collision free paths. The shortest path is then automatically chosen as the path to be traversed by the robot end-effector. The method was implemented using MATLAB running on a PC and tested on a two-link SCARA robotic arm. The tests were successful and indicate that the method could be feasibly implemented on many practical applications.

2016 ◽  
Vol 836 ◽  
pp. 37-41 ◽  
Author(s):  
Adlina Taufik Syamlan ◽  
Bambang Pramujati ◽  
Hendro Nurhadi

Robotics has lots of use in the industrial world and has lots of development since the industrial revolution, due to its qualities of high precision and accuracy. This paper is designed to display the qualities in a form of a writing robot. The aim of this study is to construct the system based on data gathered and to develop the control system based on the model. There are four aspects studied for this project, namely image processing, character recognition, image properties extraction and inverse kinematics. This paper served as discussion in modelling the robotic arm used for writing robot and generating theta for end effector position. Training data are generated through meshgrid, which is the fed through anfis.


Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 127
Author(s):  
Aryslan Malik ◽  
Troy Henderson ◽  
Richard Prazenica

This work is aimed to demonstrate a multi-objective joint trajectory generation algorithm for a 7 degree of freedom (DoF) robotic manipulator using swarm intelligence (SI)—product of exponentials (PoE) combination. Given a priori knowledge of the end-effector Cartesian trajectory and obstacles in the workspace, the inverse kinematics problem is tackled by SI-PoE subject to multiple constraints. The algorithm is designed to satisfy finite jerk constraint on end-effector, avoid obstacles, and minimize control effort while tracking the Cartesian trajectory. The SI-PoE algorithm is compared with conventional inverse kinematics algorithms and standard particle swarm optimization (PSO). The joint trajectories produced by SI-PoE are experimentally tested on Sawyer 7 DoF robotic arm, and the resulting torque trajectories are compared.


2003 ◽  
Vol 02 (01) ◽  
pp. 47-69 ◽  
Author(s):  
HEPING CHEN ◽  
NING XI ◽  
YIFAN CHEN ◽  
JEFFREY DAHL

Automatic trajectory generation for spray painting is highly desirable for today's automotive manufacturing. Generating paint gun trajectories for free-form surfaces to satisfy paint thickness requirements is still highly challenging due to the complex geometry of free-form surfaces. In this paper, a CAD-guided paint gun trajectory generation system for free-form surfaces has been developed. The system utilizes the CAD information of a free-form surface to be painted and a paint gun model to generate a paint gun trajectory to satisfy the paint thickness requirements. The paint thickness deviation from the required paint thickness is optimized by modifying the paint gun velocity. A paint thickness verication method is also provided to verify the generated trajectories. The results of simulations have shown that the trajectory generation system achieves satisfactory performance. This trajectory generation system can also be applied to generate trajectories for many other CAD-guided robot trajectory planning applications.


2020 ◽  
Vol 38 (5A) ◽  
pp. 707-718 ◽  
Author(s):  
Firas S. Hameed ◽  
Hasan M. Alwan ◽  
Qasim A. Ateia

Robot Vision is one of the most important applications in Image processing. Visual interaction with the environment is a much better way for the robot to gather information and react more intelligently to the variations of the parameters in that environment. A common example of an application that depends on robot vision is that of Pick-And-Place objects by a robotic arm. This work presents a method for identifying an object in a scene and determines its orientation. The method presented enables the robot to choose the best-suited pair of points on the object at which the two-finger gripper can successfully pick the object. The scene is taken by a camera attached to the arm’s end effector which gives 2D images for analysis. The edge detection operation was used to extract a 2D edge image for all the objects in the scene to reduce the time needed for processing. The methods proposed showed accurate object identification which enabled the robotic to successfully identify and pick an object of interest in the scene.


Author(s):  
Rahul M. R. ◽  
Rohini Y. Bhute ◽  
Shital S. Chiddarwar ◽  
Saumya Sahoo ◽  
Mohsin Dalvi

Author(s):  
Bin Wei

Abstract In this paper, a rotational robotic arm is designed, modelled and optimized. The 3D model design and optimization are conducted by using SolidWorks. Forward kinematics are derived so as to determine the position vector of the end effector with respect to the base, and subsequently being able to calculate the angular velocity and torque of each joint. For the goal positioning problem, the PD control law is typically used in industry. It is employed in this application by using virtual torsional springs and frictions to generate the torques and to keep the system stable.


2006 ◽  
Vol 6 (7) ◽  
pp. 561-582
Author(s):  
H.P. Yuen ◽  
R. Nair ◽  
E. Corndorf ◽  
G.S. Kanter ◽  
P. Kumar

Lo and Ko have developed some attacks on the cryptosystem called $\alpha \eta$}, claiming that these attacks undermine the security of $\alpha\eta$ for both direct encryption and key generation. In this paper, we show that their arguments fail in many different ways. In particular, the first attack in [1] requires channel loss or length of known-plaintext that is exponential in the key length and is unrealistic even for moderate key lengths. The second attack is a Grover search attack based on `asymptotic orthogonality' and was not analyzed quantitatively in [1]. We explain why it is not logically possible to "pull back'' an argument valid only at $n=\infty$ into a limit statement, let alone one valid for a finite number of transmissions n. We illustrate this by a `proof' using a similar asymptotic orthogonality argument that coherent-state BB84 is insecure for any value of loss. Even if a limit statement is true, this attack is a priori irrelevant as it requires an indefinitely large amount of known-plaintext, resources and processing. We also explain why the attacks in [1] on $\alpha\eta$ as a key-generation system are based on misinterpretations of [2]. Some misunderstandings in [1] regarding certain issues in cryptography and optical communications are also pointed out. Short of providing a security proof for $\alpha\eta$, we provide a description of relevant results in standard cryptography and in the design of $\alpha\eta$ to put the above issues in the proper framework and to elucidate some security features of this new approach to quantum cryptography.


2021 ◽  
Vol 11 (4) ◽  
pp. 70-79
Author(s):  
Dino Dominic Forte Ligutan ◽  
Argel Alejandro Bandala ◽  
Jason Limon Española ◽  
Richard Josiah Calayag Tan Ai ◽  
Ryan Rhay Ponce Vicerra ◽  
...  

The development of a novel 3D-printed three-claw robotic gripper shall be described in this paper with the goal of incorporating various design considerations. Such considerations include the grip reliability and stability, grip force maximization, wide object grasping capability. Modularization of its components is another consideration that allows its parts to be easily machined and reusable. The design was realized by 3D printing using a combination of tough polylactic acid (PLA) material and thermoplastic polyurethane (TPU) material. In practice, additional tolerances were also considered for 3D printing of materials to compensate for possible expansion or shrinkage of the materials used to achieve the required functionality. The aim of the study is to explore the design and eventually deploy the three-claw robotic gripper to an actual robotic arm once its metal work fabrication is finished.


Author(s):  
K. D. Chaney ◽  
J. K. Davidson

Abstract A new method is developed for determining both a satisfactory location of a workpiece and a suitable mounting-angle of the tool for planar RPR robots that can provide dexterous workspace. The method is an analytical representation of the geometry of the robot and the task, and is particularly well suited to applications in which the task requires large rotations of the end-effector. It is determined that, when the task requires that the end-effector rotate a full turn at just two locations and when the first or third joint in the robot is rotatable by one turn, then the radial location of the workpiece is fixed in the workcell but its angular location is not fixed. When the mounting-angle of the tool is also a variable, the method accommodates tasks in which the tool must rotate a full turn at three locations on the workpiece. The results are presented as coordinates of points in a two-dimensional Cartesian reference frame attached to the workcell. Consequently, a technician or an engineer can determine the location for the workpiece by laying out these coordinates directly in the workcell. Example problems illustrate the method. Practical applications include welding and deposition of adhesives.


Sign in / Sign up

Export Citation Format

Share Document