Preparation of 188 W from Unenriched Targets in Middle Flux Nuclear Reactors

2015 ◽  
Vol 1084 ◽  
pp. 317-321
Author(s):  
Alexander O. Pavluk ◽  
Evgeniy V. Chibisov ◽  
Denis V. Kabanov ◽  
Valery V. Zukau ◽  
Viktor G. Merkulov

Ways of increasing massic activity of 188W resulting from irradiation of tungsten targets in the middle flux nuclear reactor IRT-T have been analyzed. Calculation and experimental results of evaluating the influence of blocking effect on accumulation of target radionuclides are presented. The possibility to increase effective activation cross section by creating definite target shape has been experimentally proven.

1968 ◽  
Vol 46 (10) ◽  
pp. S377-S380 ◽  
Author(s):  
A. A. Petrukhin ◽  
V. V. Shestakov

The cross section for the muon bremsstrahlung process is calculated as a function of the nuclear form factor in the Born approximation following the Bethe and Heitler theory. The influence of the nuclear form factor is greater than that taken by Christy and Kusaka. The simple analytical expression for the effect of the screening of the atomic electrons is found. The influence of a decrease in the cross section upon the interpretation of some experimental results is estimated.


2008 ◽  
Vol 77 (7) ◽  
pp. 854-858 ◽  
Author(s):  
Chang-Lin Lan ◽  
Kai-Hong Fang ◽  
Xiao-San Xu ◽  
Qi Wang ◽  
Xiang-Zhong Kong ◽  
...  

1973 ◽  
Vol 57 (2) ◽  
pp. 348-354 ◽  
Author(s):  
H.S. Plendl ◽  
A. Richter ◽  
C.J. Umbarger

2015 ◽  
Vol 07 (02) ◽  
pp. 109-116
Author(s):  
Tai Wei LIM

A 2011 earthquake damaged the Fukushima nuclear reactor and provided a galvanising point for anti-nuclear resistance groups in Japan. Their public cause slowly faded from the political arena after the Democratic Party of Japan fell out of power and anti-nuclear politicians lost the 2014 Tokyo gubernatorial election. The current Liberal Democratic Party Prime Minister Abe holds a pro-nuclear position and urges the reactivation of Japan's nuclear reactors after all safeguards have been satisfied.


Author(s):  
A. S. Chinchole ◽  
Arnab Dasgupta ◽  
P. P. Kulkarni ◽  
D. K. Chandraker ◽  
A. K. Nayak

Abstract Nanofluids are suspensions of nanosized particles in any base fluid that show significant enhancement of their heat transfer properties at modest nanoparticle concentrations. Due to enhanced thermal properties at low nanoparticle concentration, it is a potential candidate for utilization in nuclear heat transfer applications. In the last decade, there have been few studies which indicate possible advantages of using nanofluids as a coolant in nuclear reactors during normal as well as accidental conditions. In continuation with these studies, the utilization of nanofluids as a viable candidate for emergency core cooling in nuclear reactors is explored in this paper by carrying out experiments in a scaled facility. The experiments carried out mainly focus on quenching behavior of a simulated nuclear fuel rod bundle by using 1% Alumina nanofluid as a coolant in emergency core cooling system (ECCS). In addition, its performance is compared with water. In the experiments, nuclear decay heat (from 1.5% to 2.6% reactor full power) is simulated through electrical heating. The present experiments show that, from heat transfer point of view, alumina nanofluids have a definite advantage over water as coolant for ECCS. Additionally, to assess the suitability of using nanofluids in reactors, their stability was investigated in radiation field. Our tests showed good stability even after very high dose of radiation, indicating the feasibility of their possible use in nuclear reactor heat transfer systems.


Author(s):  
Onome Scott-Emuakpor ◽  
Tommy George ◽  
Charles Cross ◽  
M.-H. Herman Shen

An energy-based method for predicting fatigue life of half-circle notched specimens, based on the nominal applied stress amplitude, has been developed. This developed method is based on the understanding that the total strain energy dissipated during a monotonic fracture and a cyclic process is the same material property, where the density of each can be determined by measuring the area underneath the monotonic true stress-strain curve and measuring the sum of the area within each Hysteresis loop in the cyclic process, respectively. Using this understanding, the criterion for determining fatigue life prediction of half-circle notched components is constructed by incorporating the stress gradient effect through the notch root cross-section. Though fatigue at a notch root is a local phenomenon, evaluation of the stress gradient through the notch root cross-section is essential for incorporating this method into finite element analysis minimum potential energy process. The validation of this method was carried out by comparison with both notched and unnnotched experimental fatigue life of Aluminum 6061-T6 (Al 6061-T6) specimens under tension/compression loading at the theoretical notch fatigue stress concentration factor of 1.75. The comparison initially showed a slight deviation between prediction and experimental results. This led to the analysis of strain energy density per cycle up to failure, and an improved Hysteresis representation for the energy-based prediction analysis. With the newly developed Hysteresis representation, the energy-based prediction comparison shows encouraging agreement with unnotched experimental results and a theoretical notch stress concentration value.


2017 ◽  
Vol 146 ◽  
pp. 11039 ◽  
Author(s):  
Shin-ichiro Meigo ◽  
Masaaki Nishikawa ◽  
Hiroki Iwamoto ◽  
Hiroki Matsuda

2019 ◽  
Vol 23 ◽  
pp. 47
Author(s):  
A. Kalamara ◽  
M. Serris ◽  
A. Spiliotis ◽  
D. Sigalos ◽  
N. Patronis ◽  
...  

Cross sections of the 174Hf(n,2n)173Hf and 176Hf(n,2n)175Hf reactions have been experimentally determined relative to the 27Al(n,α)24Na reference reaction at incident neutron energies of 15.3 and 17.1 MeV by means of the activation technique. The irradiations were carried out at the 5 MV tandem T11/25 Accelerator Laboratory of NCSR "Demokritos" with monoenergetic neutron beams provided via the 3H(d,n)4He reaction, using a new Ti-tritiated target of 373 GBq activity. In the determination of the 176Hf(n,2n)175Hf reaction cross section the contamination of the 174Hf(n,γ)175Hf and 177Hf(n,3n)175Hf reactions has been taken into account. Moreover, the neutron beam energy has been studied by means of Monte Carlo simulation codes and the neutron flux has been determined via the 27Al(n,α)24Na reference reaction.


1969 ◽  
Vol 4 (1) ◽  
pp. 57-64
Author(s):  
R W T Preater

Three different assumptions are made for the behaviour of the junction between the cylindrical shell and the end closure. Comparisons of analytical and experimental results show that the inclusion of a ‘rigid’ annular ring beam at the junction of the cylider and the closure best represents the shell behaviour for a ratio of cylinder mean radius to thickness of 3–7, and enables a prediction of an optimum vessel configuration to be made. Experimental verification of this optimum design confirms the predictions. (The special use of the term ‘rigid’ is taken in this context to refer to a ring beam for which deformations of the cross-section are ignored but rigid body motion is permitted.)


Sign in / Sign up

Export Citation Format

Share Document