Effect of Sintering Temperature on Biphasic Calcium Phosphate (BCP) Biocomposite

2015 ◽  
Vol 1087 ◽  
pp. 475-478 ◽  
Author(s):  
Shah Rizal Kasim ◽  
Nor Firdaus Muhamad ◽  
Sivakumar Ramakrishan

The present report aims to fabricate biphasic calcium phosphate (BCP) biocomposite in order to study the effects of sintering temperature on the sintered BCP biocomposite characteristics (phase’s formation, porosity and hardness properties). These effects were quantified using design of experiment (DOE) to develop mathematical models. BCP biocomposite pellets (60 wt% HA) were fabricated using mixing, pressing and sintered at two different temperatures (1100°C and 1250°C). The experiment was run by following the run order suggested by DOE software (Minitab 16) through randomization stage. Results show that sintering temperature will affect the formation of α-tricalcium phosphate (α-TCP) and the porosity of the samples. The formation of α-TCP phases will reduce the hardness value of BCP biocomposite.

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Mehmet Yetmez

The sintering behavior and the mechanical properties of a mechanical mixture of hydroxyapatite and tricalcium phosphate (BCP) ceramics with the composition of 30% HA and 70% TCP are experimentally investigated in the temperature range between 1000°C and 1300°C. The results show that consolidation, grain growth, and Vickers hardness generally increase with increasing sintering temperature up to 1200°C. However, microstructure observation indicates that cracks are formed along the grain boundaries as well as in the bulk of the grains after sintering at 1200°C. Moreover, the best values of compressive strength, modulus of elasticity, and toughness are achieved in the samples sintered at 1100°C. These properties at 1100°C decay with sintering at 1200°C and increase again after sintering at 1300°C.


2005 ◽  
Vol 284-286 ◽  
pp. 333-336 ◽  
Author(s):  
A.B. Diggs ◽  
J.W. Halloran ◽  
S.J. Hollister

This paper describes the investigation into the use of cathodoluminescence for distinguishing HA and β-TCP phases within the biphasic calcium phosphate ceramic microstructure. Polished samples were scanned using SEM-CL at an accelerating voltage in the range of 10-15 keV with a beam current of 5-10 nA. The grayscale images produced reveal distinctive patterns for each composition. EDS and EPMA suggest chemical differences among the contrasting regions. Image analysis of voxel values indicate that areas of bright contrast correspond to β-TCP grains with phase amounts confirmed by XRD.


2006 ◽  
Vol 309-311 ◽  
pp. 1299-1302 ◽  
Author(s):  
Hong Song Fan ◽  
Toshiyuki Ikoma ◽  
C.Y. Bao ◽  
H.L. Wang ◽  
Ling Li Zhang ◽  
...  

Calcium phosphate (Ca-P) biomaterials have been proved to show osteoinductivity, however the affecting factors and mechanism are still unclear now. In this study, the surface characteristics of biphasic Ca-P ceramics (hydroxyapatite/tricalcium phosphate; HA/TCP) sintered at the distinct temperature were investigated and the mechanism of the osteoinductivity was discussed. The osteoinductivity of HA/TCP ceramics increased with decreasing the sintering temperature. The different surface micro-structure resulted from different sintering temperature includes phase composition, surface micro-structure, and surface potential. These characteristics should be the important factors affecting osteoinductivity.


2010 ◽  
Vol 93-94 ◽  
pp. 393-396 ◽  
Author(s):  
Iis Sopyan ◽  
Natasha Ahmad Nawawi ◽  
Qasim Hussain Shah

Dense pure biphasic calcium phosphate (BCP) and Mn-doped BCP ceramics were fabricated via uniaxial pressing using the sol-gel derived powders. The compacted discs were sintered in air atmosphere with temperatures ranging from 1000 °C to 1400 °C. All powders have been proved to show HA and β-TCP phases only. Manganese doping improves the densification in the BCP structure as the relative density increased with Mn doping and also sintering temperature. Considerable grain growth has been observed at 1300 °C for Mn-doped BCP samples compared to the pure BCP. 15 mol% Mn showed the maximum hardness value of 6.66 GPa at 1400 °C compared to pure BCP of only 2.89 GPa. Similarly, the Mn-doped BCP has superior fracture toughness where it attained maximum values of 1.05 MPam1/2 at 1400 °C compared to 0.72 MPam1/2 at 1300 °C of pure BCP. In a nutshell, Mn doping has successfully brought improvement in the mechanical properties of the BCP.


2019 ◽  
Vol 6 (12) ◽  
pp. 125412 ◽  
Author(s):  
Haiwen Chen ◽  
Wenxue Dou ◽  
Qingfeng Zhu ◽  
Danyu Jiang ◽  
Jinfeng Xia ◽  
...  

2007 ◽  
Vol 534-536 ◽  
pp. 49-52 ◽  
Author(s):  
Min Ho Youn ◽  
Rajat Kanti Paul ◽  
Ho Yeon Song ◽  
Byong Taek Lee

Using microwave synthesized HAp nano powder and polymethyl methacrylate (PMMA) as a pore-forming agent, the porous biphasic calcium phosphate (BCP) ceramics were fabricated depending on the sintering temperature. The synthesized HAp powders was about 70-90 nm in diameter. In the porous sintered bodies, the pores having 150-180 μm were homogeneously dispersed in the BCP matrix. Some amounts of pores interconnected due the necking of PMMA powders which will increase the osteoconductivity and ingrowth of bone-tissues while using as a bone substrate. As the sintering temperature increased, the relative density increased and showed the maximum value of 79.6%. From the SBF experiment, the maximum resorption of Ca2+ ion was observed in the sample sintered at 1000°C.


2012 ◽  
Vol 529-530 ◽  
pp. 441-446
Author(s):  
Thomas Miramond ◽  
Pascal Borget ◽  
Caroline Colombeix ◽  
Serge Baroth ◽  
G. Daculsi

The main goal of this study was to succeed in the relevant association of well-known osteoconductive biphasic calcium phosphate (BCP) made of Hydroxyapatite (20% HA) and β-Tricalcium Phosphate (80% β-TCP) crystallographic phases and resorbable poly (L-lactide-co-D,L-lactide)(PLDLLA) 3D matrices synthesized by electrospinning. Two types of mineral particles were obtained, BCP new hollow granules, and classical BCP particles. It appeared that hollow shells/PLDLLA composite 3D matrices allowed higher cell adhesionin vitro,thanks to internal concavities and are promising scaffolds in terms of cell carrying.


2007 ◽  
Vol 330-332 ◽  
pp. 91-94 ◽  
Author(s):  
Y. Zhang ◽  
Yoshiyuki Yokogawa ◽  
Tetsuya Kameyama

Biphasic calcium phosphate (BCP) ceramics, a mixture of hydroxyapatite (HAp) and beta-tricalcium phosphate (β-TCP), of varying HAp/β-TCP ratios were prepared from fine powders. Porous BCP ceramic materials with HAp/β-TCP weight rations of 20/80, 40/60, and 80/20 were prepared. In this study, the bioactivity is reduced at a larger HAp content rate, which is likely related to the high driving pore for the formation of a new phase, and the reaction rate was proportional to the β-TCP. The porous BCP ceramics having a bigger porosity rate can easily under up dissolution. The powder having a larger β-TCP content rate can easily generate a new phase. The dissolution results confirmed that the biodegradation of calcium phosphate ceramics could be controlled by simply adjusting the amount of HAp or β-TCP in the ceramics and porosity rate.


2016 ◽  
Vol 721 ◽  
pp. 229-233 ◽  
Author(s):  
Sandris Petronis ◽  
Janis Locs ◽  
Vita Zalite ◽  
Mara Pilmane ◽  
Andrejs Skagers ◽  
...  

Calcium bone substitutes are successfully used for local recovery of osteoporotic bone and filling of bone defects. Previous studies revieled that biphasic calcium phosphate (BCP) show better bioactivity in compare to pure β-tricalcium phosphate or hydroxyapatite. Also increased porosity of material promotes better bone tissue response. Aim of this experiment was to evaluate immunohistologically response of osteoporotic bone of experimental animal to implantation of granules with hydroxyapatite/β-tricalcium phosphate (HAp/β-TCP) ratio of 90/10. Calcium phosphate (CaP) was synthesized by aqueous precipitation technique from calcium hydroxide and phosphoric acid. Bioceramic granules in size range from 1.0 to 1.4 mm were prepared with nanopore sizes around 200 nm. We used nine female rabbits with induced osteoporosis in this experiment. Six animals in study group underwent implantation of BCP in hip bone defect and three animals in control group left without BCP implantation. After 6 months animals were euthanized, bone samples collected and proceeded for detection of bone activity and repair markers: osteocalcin (OC), osteopontin (OP) and osteoprotegerin (OPG). Controls showed the presence of experimental bone osteoporosis. In experimental group bone showed partially resorbed bioceramic granules and in some samples new bone formation near the granuli was observed. Increase of OC and OPG up to twice as to compare to control group were detected as well. Implantation of BCP granules in osteoporotic rabbit bone increases expression of OC and OPG indicating the activation of osteoblastogenesis and bone mineralization in vivo.


Sign in / Sign up

Export Citation Format

Share Document