Electrical Properties of Indium-Doped Zinc Oxide Nanostructures Doped at Different Dopant Concentrations

2015 ◽  
Vol 1109 ◽  
pp. 593-597
Author(s):  
M.F. Nasir ◽  
Mohd Hannas ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This project has been focused on the electrical and optical properties on the effect of Indium doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different In dopant concentrations at 1 at%, 1.5 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 oC. In doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and UV-Vis-NIR spectrophotometer for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% In doping concentration which is 8.27× 103Ωcm-1The absorption coefficient spectrum obtained from UV-Vis-NIR spectrophotometer measurement shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.

2015 ◽  
Vol 1109 ◽  
pp. 577-581 ◽  
Author(s):  
M.F. Nasir ◽  
Mohd Hannas ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 oC. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 103Ωcm-1. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.


2015 ◽  
Vol 1109 ◽  
pp. 572-576
Author(s):  
M.F. Nasir ◽  
Mohd Hannas ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This project has been focused on the electrical and optical properties respectively on the effect of Undoped zinc oxide (ZnO) thin films at different annealing temperature which is varied 400 oC, 450 oC, 500 oC, and 550 oC.Undoped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and UV-vis-NIR spectrophotometer for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 500 oC which its resistivity is 5.36 × 104Ωcm-1. The absorption coefficient spectrum obtained from UV-Vis-NIR spectrophotometer measurement shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.


2020 ◽  
pp. 2050044
Author(s):  
SAHAR MORADI ◽  
HASSAN SEDGHI

Nanostructured Fe:SnO2 thin films were deposited on glass substrates through sol–gel spin coating method. Films were synthesized with different iron quantities including 0%, 4%, 8% and 12% (wt.%). The effects of Fe concentration on optical properties of films were investigated by spectroscopic ellipsometry (SE) technique. SE measured ([Formula: see text]) parameters for films in the wavelength range between 300[Formula: see text]nm to 800[Formula: see text]nm. Optical properties including the refractive index, extinction coefficient, transmittance, dielectric constants and optical conductivity were determined by fitting the SE measured ([Formula: see text]) parameters and data obtained from the optical model-based analysis. Results showed that the transmittance values increase by increment of Fe concentration from 0% to 12%. The bandgap energy ([Formula: see text] of prepared thin films was also calculated. [Formula: see text] values were between 3.44 and 3.58[Formula: see text]eV. Dispersion parameters including the high frequency dielectric constant ([Formula: see text] and the ratio of free carrier concentration to effective mass (N/m[Formula: see text] were then obtained for the prepared films.


2013 ◽  
Vol 16 (1) ◽  
pp. 92-100
Author(s):  
Chien Mau Dang ◽  
Dam Duy Le ◽  
Tam Thi Thanh Nguyen ◽  
Dung Thi My Dang

In this study, we have successfully synthesized Fe3+ doped SiO2/TiO2 thin films on glass substrates using the sol-gel dip-coating method. After synthesizing, the samples were annealed at 5000C in the air for 1 hour. The characteristics and optical properties of Fe3+ doped SiO2/TiO2 films were then investigated by X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FT-IR). An antifogging ability of the glass substrates coated with the fabricated film is investigated and explained by a water contact angle under visible-light. The analyzed results also show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystalline size decreased from 8.8 to 5.9 nm. We also observed that the absorption edge of Fe3+- doped SiO2/TiO2 thin films shifted towards longer wavelengths (i.e. red shifted) from 371.7nm to 409.2 nm when the Fe3+-doped concentration increased from 0 to 1 % mol.


2015 ◽  
Vol 1109 ◽  
pp. 598-602 ◽  
Author(s):  
Mohd Nizar Zainol ◽  
Shafinaz Sobihana Shariffudin ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This paper presents on the effect of oxygen annealing on the electrical properties and optical properties. Sol gel spin coating is used to deposit zinc oxide thin films on glass substrates to obtain the uniform thin films. Here, the ZnO thin films were annealed in oxygen environment with various oxygen concentration of 20 to 40 sccm. This metal oxide has shown its ability as a very high optical transmittance which at 20 sccm thin films give the highest transmittance that is 97.44% and at 40 sccm thin films give the lowest transmittance that is 87.61%. Next, this metal oxide also has shown its ability in fairly good electrical properties which the lowest resistivity at 40 sccm thin films is 1.61× 104 Ωcm-1.


2012 ◽  
Vol 457-458 ◽  
pp. 42-45
Author(s):  
Wen Wu Zhong ◽  
Fa Min Liu ◽  
Qin Yi Shi ◽  
Wei Ping Chen

Al and Sb codoped ZnO thin films were prepared through a sol-gel spin coating method on glass substrates and annealed in different atmospheres. The XRD results show that the films have hexagonal wurtzite ZnO structure and SEM results reveal that the films annealed in hydrogen consist of hexagonal nanorods with diameters of 84 nm and lengths of 422 nm, however the films annealed in other atmospheres without nanorods. The photoluminescence (PL) spectrum shows that the emission peaks of the films are mostly at 390 and 460 nm, and the film annealed in hydrogen has the strongest intensity of peak at 390 nm and the film annealed in air has the strongest intensity of peak at 460 nm. The electrical properties show that the films annealed in hydrogen have a lowest resistivity of 1.02×10-3 Ω•cm.


Sign in / Sign up

Export Citation Format

Share Document