Effect of Oxygen Annealing on the Electrical and Optical Properties of Zinc Oxide Thin Film

2015 ◽  
Vol 1109 ◽  
pp. 598-602 ◽  
Author(s):  
Mohd Nizar Zainol ◽  
Shafinaz Sobihana Shariffudin ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This paper presents on the effect of oxygen annealing on the electrical properties and optical properties. Sol gel spin coating is used to deposit zinc oxide thin films on glass substrates to obtain the uniform thin films. Here, the ZnO thin films were annealed in oxygen environment with various oxygen concentration of 20 to 40 sccm. This metal oxide has shown its ability as a very high optical transmittance which at 20 sccm thin films give the highest transmittance that is 97.44% and at 40 sccm thin films give the lowest transmittance that is 87.61%. Next, this metal oxide also has shown its ability in fairly good electrical properties which the lowest resistivity at 40 sccm thin films is 1.61× 104 Ωcm-1.

2013 ◽  
Vol 667 ◽  
pp. 272-276
Author(s):  
S.A. Razali ◽  
Mohamad Hafiz Mamat ◽  
M.N. Berhan ◽  
Mohamad Rusop Mahmood

The optical properties and morphology of Aluminum (Al) doped Zinc Oxide (ZnO) thin films prepared by sol-gel method have been investigated. The thin films were prepared at annealing temperature of 550 OC and have been exposed under wet and dry conditions. UV-Vissmeasurements have been carried out to investigate the optical properties while Scanning Electron Microscope (SEM) to investigate morphology. The grain size of films was increased with increased annealing temperature. The average optical transmittance became about 80% in the visible and had sharp ultraviolet absorption edges at 380 nm. The absorption edge analysis revealed that the optical band gap energy for the films was ~ 3.26 eV. The surface morphology in increasing annealing temperature has a big size and less porosity between particles.


2015 ◽  
Vol 1109 ◽  
pp. 593-597
Author(s):  
M.F. Nasir ◽  
Mohd Hannas ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This project has been focused on the electrical and optical properties on the effect of Indium doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different In dopant concentrations at 1 at%, 1.5 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 oC. In doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and UV-Vis-NIR spectrophotometer for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% In doping concentration which is 8.27× 103Ωcm-1The absorption coefficient spectrum obtained from UV-Vis-NIR spectrophotometer measurement shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.


2015 ◽  
Vol 749 ◽  
pp. 308-312 ◽  
Author(s):  
Shafaq Mardhiyana Mohamat Kasim ◽  
Nor Azira Akma Shaari ◽  
Raudah Abu Bakar ◽  
Sukreen Hana Herman

Single layer of titanium dioxide (TiO2) is common metal oxide in fabricating memristor device. In this study, two types of memristor with composite metal oxide thin films will be demonstrated. The two types of memristor are titanium dioxide (TiO2) thin film coated on zinc oxide (ZnO) thin film and ZnO coated on TiO2 thin film. Sol-gel spin coating method was to coat metal oxide thin film and sputtering method for depositing the metal contact. Platinum (Pt) was selected as the top electrode and indium tin oxide (ITO) as the bottom electrode. The electrical characteristics were defined by performing I-V measurement using two point probe equipment. I-V characteristics showed shape of pinched hysteresis loop for both samples. Sample with TiO2 coated on ZnO has slightly higher Roff/Ron ratio than sample ZnO coated on TiO2 which means it more memristive than another one. The cross-section of sample with TiO2 coated on ZnO had been performed as well by using Field-Emission Scanning Electron Microscopy (FESEM).


2015 ◽  
Vol 1109 ◽  
pp. 577-581 ◽  
Author(s):  
M.F. Nasir ◽  
Mohd Hannas ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This project has been focused on the electrical and optical properties respectively on the effect of Tin doped zinc oxide (ZnO) thin films at different dopant concentrations. These thin films were doped with different Sn dopant concentrations at 1 at%, 2 at%, 3 at%, 4 at% and 5 at% was selected as the parameter to optimize the thin films quality while the annealing temperature is fixed 500 oC. Sn doped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and ultraviolet-visible-near-infrared (UV-vis-NIR) spectrophotometer (Perkin Elmer Lambda 750) for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 4 at% Sn doping concentration with the value 3.08 × 103Ωcm-1. The absorption coefficient spectrum obtained shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1744 ◽  
Author(s):  
Mohammad Hossein Nateq ◽  
Riccardo Ceccato

The electrical and optical properties of sol–gel derived aluminum-doped zinc oxide thin films containing 2 at.% Al were investigated considering the modifying effects of (1) increasing the sol H2O content and (2) a thermal treatment procedure with a high-temperature approach followed by an additional heat-treatment step under a reducing atmosphere. According to the results obtained via the TG-DTA analysis, FT-IR spectroscopy, X-ray diffraction technique, and four-point probe resistivity measurements, it is argued that in the modified sample, the sol hydrolysis, decomposition of the deposited gel, and crystallization of grains result in grains of larger crystallite size in the range of 20 to 30 nm and a stronger c-axis preferred orientation with slightly less microstrain. The obtained morphology and grain-boundary characteristics result in improved conductivity considering the resistivity value below 6 mΩ·cm. A detailed investigation of the samples’ optical properties, in terms of analyzing their absorption and dispersion behaviors through UV-Vis-NIR spectroscopy, support our reasoning for the increase of the mobility, and to a lesser extent the concentration of charge carriers, while causing only a slight degradation of optical transmittance down to nearly 80%. Hence, an enhanced performance as a transparent conducting film is claimed for the modified sample by comparing the figure-of-merit values.


2015 ◽  
Vol 1109 ◽  
pp. 572-576
Author(s):  
M.F. Nasir ◽  
Mohd Hannas ◽  
Mohamad Hafiz Mamat ◽  
Mohamad Rusop

This project has been focused on the electrical and optical properties respectively on the effect of Undoped zinc oxide (ZnO) thin films at different annealing temperature which is varied 400 oC, 450 oC, 500 oC, and 550 oC.Undoped ZnO solutions were deposited onto the glass substrates using sol-gel spin coating method. This project was involved with three phases, which are thin films preparation, deposition and characterization. The thin films were characterized using Current Voltage (I-V) measurement and UV-vis-NIR spectrophotometer for electrical properties and optical properties. The electrical properties show that the resistivity is the lowest at 500 oC which its resistivity is 5.36 × 104Ωcm-1. The absorption coefficient spectrum obtained from UV-Vis-NIR spectrophotometer measurement shows all films exhibit very low absorption in the visible (400-800nm) and near infrared (NIR) (>800nm) range but exhibit high absorption in the UV range.


2021 ◽  
Vol 24 (3) ◽  
pp. 38-42
Author(s):  
Marwa Mudfer Alqaisi ◽  
◽  
Alla J. Ghazai ◽  

In this work, pure Zinc oxide and tin doped Zinc oxide thin films nanoparticles with various volume concentrations of 2, 4, 6, and 8V/V% were prepared by using the sol-gel method. The optical properties were investigated by using UV-Visible spectroscope, and the value exhibits the direct allowed transition. The average of transmittance was around ~(17-23) %in visible region. The optical energy band gap was calculated with wavelength (300-900) nm for pure ZnO and Sn doped ZnO thin films which decreases with increasing concentration from 3.4 eV to 3.1 eV respectively and red shift. The real dielectric(εr) and the imaginary dielectric εiare the same behavior of the refractive index(n) the extinction coefficient (k) respectively. The optical limiting properties were studied by using an SDL laser with a wavelength of 235 nm. ZnO and doping thin films an found efficient as optic limiting and depend on the concentration of the all samples.


2019 ◽  
Vol 26 (03) ◽  
pp. 1850158 ◽  
Author(s):  
MARYAM MOTALLEBI AGHGONBAD ◽  
HASSAN SEDGHI

Zinc Oxide thin films were deposited on glass substrates by sol–gel spin coating method. Zinc acetate dihydrate, 2-methoxyethanol and monoethanolamine were used as precursor, solvent and stabilizer, respectively. Zinc acetate dihydrate was used with different molar concentrations of 0.15, 0.25 and 0.5 M. Optical properties of ZnO thin films such as dielectric constants, absorption coefficient, Urbach energy and optical band gap energy were calculated by spectroscopic ellipsometry (SE) method. The effect of zinc acetate concentration on optical properties of ZnO thin films is investigated. ZnO thin film with Zn concentration of 0.25 M had the highest optical band gap. Wemple DiDomenico oscillator model was used for calculation of the energy of effective dispersion oscillator, the dispersion energy, the high frequency dielectric constant, the long wavelength refractive index and the free carrier concentration.


Sign in / Sign up

Export Citation Format

Share Document