Oxide Dissolution Treatment of Porous Anodic Alumina

2015 ◽  
Vol 1109 ◽  
pp. 73-77
Author(s):  
Chun Hong Voon ◽  
Mohd Nazree Derman ◽  
U. Hashim ◽  
Bee Ying Lim ◽  
Sung Ting Sam

In this study, oxide dissolution treatment was used for the formation of well ordered porous anodic alumina. Porous anodic alumina was formed on mechanically polished high purity aluminium by anodizing at 50 V in 0.3 M oxalic acid of 15°C for 60 minutes. It is observed that the pore arrangement of as anodized porous anodic alumina was randomly distributed and showed no ordered hexagonal cell structure. As anodized porous anodic alumina were then subjected to oxide dissolution treatment of increasing exposure duration, up to three minutes. Micrographs were captured by using scanning electron microscope. Pore arrangement of porous anodic alumina subjected to oxide dissolution treatment up to two minutes were similar to one another where no ordered periodic structures were formed. .When porous anodic alumina subjected to oxide dissolution treatment for three minutes, a perfect hexagonal pore arrangement was obtained.

2015 ◽  
Vol 1109 ◽  
pp. 69-72
Author(s):  
Chun Hong Voon ◽  
Mohd Nazree Derman ◽  
Kai Loong Foo ◽  
M. Nuzaihan ◽  
Uda Hashim

In this study, Fast Fourier Transform (FFT) analysis was conducted on the images of scanning electron microscope of morphology of the porous anodic alumina formed on high purity aluminium. High purity aluminium substrates were anodized at 50 V in 0.3 M oxalic acid of 15°C for 60 minutes. As anodized porous anodic alumina were then subjected to oxide dissolution treatment of increasing exposure duration, up to three minutes. Micrographs were captured by using scanning electron microscope and the images were analyzed using FFT. It was found that the FFT images of as anodized porous anodic alumina and porous anodic alumina subjected to oxide dissolution treatment up to two minutes were similar, which were disc shaped white forms, indicating no ordered periodic structures were formed. When porous anodic alumina subjected to oxide dissolution treatment for three minutes, FFT image showed six distinct spots at the edges of a hexagon, indicating a perfect hexagonal pore arrangement was obtained for porous anodic alumina subjected to oxide dissolution treatment for three minutes.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
C. H. Voon ◽  
M. N. Derman ◽  
U. Hashim

The influence of manganese content on the formation of well-ordered porous anodic alumina was studied. Porous anodic alumina has been produced on aluminium substrate of different manganese content by single-step anodizing at 50 V in 0.3 M oxalic acid at 15°C for 60 minutes. The well-ordered pore and cell structure was revealed by subjecting the porous anodic alumina to oxide dissolution treatment in a mixture of chromic acid and phosphoric acid. It was found that the manganese content above 1 wt% impaired the regularity of the cell and pore structure significantly, which can be attributed to the presence of secondary phases in the starting material with manganese content above 1 wt%. The pore diameter and interpore distance decreased with the addition of manganese into the substrates. The time variation of current density and the thickness of porous anodic alumina also decreased as a function of the manganese content in the substrates.


2015 ◽  
Vol 1109 ◽  
pp. 78-82
Author(s):  
Chun Hong Voon ◽  
Mohd Nazree Derman ◽  
U. Hashim ◽  
Kai Loong Foo ◽  
Seng Teik Ten

In this study, porous anodic alumina was formed on aluminium alloy substrate with increasing manganese content, from high purity aluminium with 0 wt% Mn to aluminium alloy with 2.0 wt% manganese by anodizing. Substrates were anodized at 50 V in 0.3 M oxalic acid of 15°C for 60 minutes. Images from the optical microscope revealed that no secondary phase existed in high purity aluminium and aluminium substrate with 0.5 wt% manganese while two phases were observed when the manganese contents were higher than 0.5 wt%. Element dispersive X ray spectroscopy spot analysis suggested that the secondary phase consists of both aluminium and manganese. Well ordered porous anodic alumina was obtained on high purity aluminium and aluminium substrate with 0.5 wt% manganese while pore arrangement of porous anodic alumina was significant disturbed when aluminium alloys with manganese contents higher than 0.5 wt% were anodized.


2013 ◽  
Vol 63 (11) ◽  
pp. 1249-1253
Author(s):  
Jin Ho KWAK ◽  
Jin Kyu HAN ◽  
Yong Chan CHOI ◽  
Sang Don BU*

2007 ◽  
Vol 7 (2) ◽  
pp. 641-646 ◽  
Author(s):  
Smita Gohil ◽  
Ramesh Chandra ◽  
Bhagyashree Chalke ◽  
Sangita Bose ◽  
Pushan Ayyub

Silver nanoparticles were sputter deposited through self organized hexagonally ordered porous anodic alumina templates that were fabricated using a two-step anodization process. The average pore diameter of the template was 90 nm and the interpore spacing was 120 nm. Atomic force microscope studies of the sputter-deposited silver nanoparticle array on a Si substrate indicate an approximate replication of the porous anodic alumina mask. The nature of the deposition depends strongly on the process parameters such as sputtering voltage, ambient pressure and substrate temperature. We report a detailed study of the sputtering conditions that lead to an optimal deposition through the template.


2014 ◽  
Vol 57 ◽  
pp. 116-120 ◽  
Author(s):  
Xi Chen ◽  
Dongliang Yu ◽  
Liu Cao ◽  
Xufei Zhu ◽  
Ye Song ◽  
...  

2019 ◽  
Vol 111 ◽  
pp. 24-33 ◽  
Author(s):  
Wenqiang Huang ◽  
Mengshi Yu ◽  
Shikai Cao ◽  
Lizhen Wu ◽  
Xiaoping Shen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document