Synthesis and Electrical Characterization of 0.8(K,Na)NbO3-0.2(Ba,Ca)(Zr,Ti)O3 Lead-Free Ceramics

2015 ◽  
Vol 1112 ◽  
pp. 15-18
Author(s):  
Nur Amaliya Rohmah ◽  
Nahariatul Hikmah ◽  
Suasmoro Suasmoro

In this research, the physical and electrical properties of 0.8K0.5Na0.5NbO3-0.2Ba0.5Ca0.5Zr0.5Ti0.5O3(0.8KNN-0.2BCZT) were characterized. Lead-free material, 0.8KNN-0.2BCZT with and without alkaline excess was synthesized via solid state reaction method. KNN and BCZT were calcined at 700°C and 1200°C for 2 hours respectively and mixed by planetary milling. The mixed powder was recalcined at 1250°C for an hour then sintered at 1150°C, 1200°C and 1250°C for 2 and 4 hours. XRD analysis of 0.8KNN-0.2BCZT for excessive (8% Na, 2% K) sample sintered at 1150°C for 4 hours has single phase showing ABO3structure (A=K, Na, Ba, Ca and B=Ti, Zr, Nb) and multi phases for the other ones. The microstructure analysis (SEM) showed cubic-like grain shape in which excessive sample possessed greater average grain size than other. Dielectric properties and Curie temperature of single phase sample in this research were higher than those of pure KNN. The conductivity analysis reveals two regimes. The first regime (<300°C) showed no significant role of BCZT in KNN and the second one (>300°C) showed that BCZT increased conductivity of KNN and factor dissipation as well.

2011 ◽  
Vol 695 ◽  
pp. 166-169
Author(s):  
Anucha Ruangphanit ◽  
Prapapim Phetnoi ◽  
Surasak Niemcharoen ◽  
Rangson Muanghlua

Bismuth potassium titanate – strontium titanate (1-x)Bi0.5K0.5TiO3-(x)SrTiO3 (BKT-ST) lead-free ceramics when x = 0-0.20 were synthesized by the solid state reaction method with normal sintering. The ferroelectric phase transition was studied by X-ray diffraction (XRD). All compositions showed a single phase perovskite structure with tetragonal symmetry at room temperature and the phase structure transformed from ferroelectric tetragonal – paraelectric cubic in the range of x ³ 0.10 . Dielectric study revealed that the dielectric relaxor behavior was induced with increasing ST and transition temperature (Tm@εr max) of ST-doped BKT had a tendency to decrease with increasing ST. The Bi0.5K0.5TiO3 – SrTiO3 system was expected to be a new and promising candidate for lead-free capacitors.


2013 ◽  
Vol 547 ◽  
pp. 41-48 ◽  
Author(s):  
Prasun Ganguly ◽  
A.M. Biradar ◽  
A.K. Jha

The polycrystalline samples of Ba4CaRTi3Nb7O30 (R = Eu, Dy), members of tungsten-bronze family, were prepared by high-temperature solid state reaction method and studied for their dielectric and electrical properties. X-ray diffraction (XRD) analysis reveals the formation of single-phase compounds having orthorhombic crystal structure at room temperature. Microstructural analysis by scanning electron microscope (SEM) shows that the compounds have well defined grains, which are distributed uniformly throughout the sample. Detailed dielectric properties of the compounds as a function of frequency and temperature show that the compounds undergo non-relaxor kind of ferroelectric-paraelectric phase transition of diffuse nature. Ferroelectric, piezoelectric and pyroelectric studies of the compounds have been discussed in this paper. The temperature dependence of dc conductivity of the compounds have been investigated. The conductivity study over a wide temperature range suggests that the compounds have negative temperature coefficient of resistance (NTCR) behaviour.


RSC Advances ◽  
2018 ◽  
Vol 8 (28) ◽  
pp. 15613-15620 ◽  
Author(s):  
Xiaochun He ◽  
Ruiqing Chu ◽  
Zhijun Xu ◽  
Zhongran Yao ◽  
Jigong Hao

Lead-free ceramics, SrBi2Nb2O9–xBi2O3 (SBN–xBi), with different Bi contents of which the molar ratio, n(Sr) : n(Bi) : n(Nb), is 1 : 2(1 + x/2) : 2 (x = −0.05, 0.0, 0.05, 0.10), were prepared by conventional solid-state reaction method.


2016 ◽  
Vol 34 (2) ◽  
pp. 437-445 ◽  
Author(s):  
Sumit K. Roy ◽  
S. Chaudhuri ◽  
R.K. Kotnala ◽  
D.K. Singh ◽  
B.P. Singh ◽  
...  

AbstractIn this work the X-ray diffraction, scanning electron microscopy, Raman and dielectric studies of lead free perovskite (1 – x)Ba0.06(Na1/2Bi1/2)0.94TiO3–xNaNbO3 (0 ⩽ x ⩽ 1.0) ceramics, prepared using a standard solid state reaction method, were investigated. X-ray diffraction studies of all the ceramics suggested the formation of single phase with crystal structure transforming from rhombohedral-tetragonal to orthorhombic symmetry with the increase in NaNbO3 content. Raman spectra also confirmed the formation of solid solution without any new phase. Dielectric studies showed that the phase transition is of diffusive character and diffusivity parameter decreases with increasing NaNbO3 content. The compositional fluctuation was considered to be the main cause of diffusivity.


2019 ◽  
Vol 33 (19) ◽  
pp. 1950219 ◽  
Author(s):  
Mukhtar Ahmad ◽  
Jawaria Shaheen ◽  
Waseem Abbas Hashmi ◽  
Majid Niaz Akhtar ◽  
Muhammad Asif

In this work, Sr-substituted samples of single-phase spinel monoferrites with chemical formula [Formula: see text] (x = 0.00, 0.33, 0.67, 1.00) were synthesized using sol–gel auto-combustion method. In order to confirm the single-phase formation of these samples, a sample (x = 0.00) was chosen for heat treatment at different temperatures (100, 300, 400, 600 and [Formula: see text]) for 4 h. The heat treated sample was then investigated by X-ray diffraction (XRD) analysis and results showed that a single-phase sample can be successfully synthesized at a temperature of [Formula: see text], which is much lower than that reported in earlier literature for synthesis of same structured samples. All the synthesized samples were then sintered at [Formula: see text] for 4 h to achieve better crystallinity. From XRD patterns, lattice parameters, cell volume and XRD density as a function of Sr-substitution were calculated. Scanning electron microscopy (SEM) results showed that the grain size increased as the temperature was increased. Fourier transform infrared spectroscopy (FTIR) results confirmed the single-phase spinel monoferrites at [Formula: see text]. From M–H loops (x = 0.0, 0.33, 0.67 and 1.00), different magnetic parameters such as saturation magnetization [Formula: see text], remanance [Formula: see text], coercivity [Formula: see text] and magnetic moment [Formula: see text] were calculated. Magnetocrystalline anisotropy constant and Y–K angles of Sr-doped Ba monoferrites were also calculated. In addition, the variation of different dielectric parameters (real permittivity, imaginary permittivity, real permeability, imaginary permeability, ac conductivity and loss tangent) as a function of frequency (1–6 GHz) has been discussed in this work. The results suggest that the synthesized materials have many advantages over previously reported single-phase spinel monoferrites.


2012 ◽  
Vol 512-515 ◽  
pp. 1385-1389 ◽  
Author(s):  
Wang Feng Bai ◽  
Wei Li ◽  
Bo Shen ◽  
Ji Wei Zhai

Lead-free piezoelectric ceramics, (Ba0.85-xSrxCa0.15)(Zr0.1Ti0.9)O3 (BSCZT, x=0.01-0.07), were prepared via a solid-state reaction route. The dielectric properties, ferroelectric properties, piezoelectric and strain properties of BSCZT ceramics were studied. The phase structure and microstructure were investigated by X-ray diffraction and scanning electron microscope, respectively. Results showed that dense ceramics with pure perovskite phase were obtained. At room temperature, the samples with x=0.03 exhibited excellent properties with large piezoelectric coefficient d33=534pC/N, planar mode electromechanical coupling coefficient kp=47.7%, thickness mode electromechanical coupling coefficient kt= 42% and high strain levels of 0.34%. In addition, the study of electrical properties suggested that the Curie temperature decreased linearly from 92oc to 73oc with the increasing doping content of strontium in BCZT ceramics. The remnant polarizations, piezoelectric coefficient and strain levels were all increased as the Sr content increased and then decreased with further increased Sr doping level, giving the maximum values at the Sr content of 3mol%. These results indicated that the BSCZT system is a promising lead-free material for applications in the future.


2020 ◽  
Author(s):  
Nitchal Kiran Jaladi ◽  
K. Sambasiva Rao ◽  
Haileeyesus Workineh ◽  
J. Anindhya Kiran ◽  
S. Nagamani

Abstract In this manuscript, the structural and dielectric properties of Gadolinium (Gd3+) substituted at Bi-site of SrBi2-xGdxNb2O9 (x= 0.0, 0.4, 0.6 and 0.8) prepared by using solid state reaction are studied. XRD analysis revealed the formation of single phase with orthorhombic structure in SBN and Gadolinium modified SBN. It is found that cell parameters and volume were decreased with increase of Gd3+ ion concentration in SBN. SEM analysis revealed that the samples possess well defined needle shaped grains. The grain size of SBN was hindered by the presence of Gd3+ ion at Bi-site. The growth of single phase layered perovskite structure was confirmed from FTIR and Raman spectroscopy. The dielectric properties of Gd3+ ion doped SBN ceramics are studied as a function of frequency (50Hz-1MHz) from room temperature to 500ºC. It is observed that phase transition temperature (Tc) decreased from 430ºC to 330ºC with increase of frequency due to incorporation of Gd3+ ion in SBN. The broadness of peaks and decrease in Tc indicate the transition from a normal ferroelectric to ferroelectric-relaxor type. The study on variation of tanδ with temperature at different frequencies indicates that tanδ has larger values at higher temperatures. Further, the diffuseness parameter (γ) has been computed for all the compositions.


2009 ◽  
Vol 23 (11) ◽  
pp. 1437-1442 ◽  
Author(s):  
PRATIBHA SINGH ◽  
SANGEETA SINGH ◽  
J. K. JUNEJA ◽  
CHANDRA PRAKASH ◽  
K. K. RAINA

Here we report the investigations on Sm -substituted PZTFN ( Pb 1-x Sm x Zr 0.588 Ti 0.392 Fe 0.01 Nb 0.01 O 3) (where x = 0, 0.02, 0.04, 0.06, 0.08, 0.10) polycrystalline solid solutions fabricated by solid-state reaction method. XRD analysis shows all the samples to be single phase with tetragonal structure. Dielectric measurements were carried out in the temperature range 30°C–400°C at different frequencies in the range 100 Hz to 100 kHz. From the temperature variation of dielectric constant (ε), Curie temperature (TC) was determined which was found to decrease with increasing x. The room temperature dielectric constant (ε RT ) initially increases with increasing x and then starts decreasing. Dielectric loss improves with Sm -doping.


2013 ◽  
Vol 802 ◽  
pp. 213-217 ◽  
Author(s):  
Chalida Nakhowong ◽  
Teerawut Sumpao ◽  
Tosawat Seetawan

The Mg2Si compound was synthesized by the solid state reaction method. The powder precursors of Mg and Si were thoroughly mixed in ballmilling for 24 hr in an argon atmosphere. Mixed powder was pressed at 170MPa and sintered at 800 °C for 6 hr in an argon atmosphere. The sinter powder was crushed in mortar for 1 hr. The crystal structure and microstructure were measured and observed by using XRD and SEM. The microstructure and the crystal structure were analyzed. TheMg2Si shows single phase, cubic structure and particle size about 1-10 mm.


2007 ◽  
Vol 534-536 ◽  
pp. 1081-1084 ◽  
Author(s):  
Yuhsuke Takahashi ◽  
Hiroaki Matsushita ◽  
Akinori Katsui

The preparation of single-phase CuLaO2 with delafossite-type structure by means of the solid-state reaction method was investigated using X-ray diffraction. The results showed that notwhistanding the fact that there was a trace of metallic copper, nearly single-phase CuLaO2 was obtained by using La(OH)3 as a lanthanum source and by firing the mixed powder with nonstoichiometric composition ratio of La(OH)3:Cu2O =1:1.425 in a vacuum at 1273 K for 10 h. The measurement of electrical conductivity and Seebeck coefficient showed that CuLaO2 thus obtained was a p-type semiconductor and had a Seebeck coefficient of approximately 70 /V/K.


Sign in / Sign up

Export Citation Format

Share Document