Effect of Organic Loading Rate (OLR) of Slurry on Biogas Production Quality

2015 ◽  
Vol 1115 ◽  
pp. 325-330
Author(s):  
Maizirwan Mel ◽  
Nadiah Mohd Suhuli ◽  
Avicenna ◽  
Sany Izan Ihsan ◽  
Ahmad Faris Ismail ◽  
...  

In this study, three different concentration of organic loading rate (OLR) were investigated to examine the effect of the change in the organic loading rate on the efficiency of the biogas production. Daily amount of biogas of different type of organic loading rate (OLR), rates of production of biogas, removal efficiencies of chemical oxygen demand (COD), total solid (TS) matter, volatile solids (VS) matter from the slurry were investigated in 30 days retention tyme using 50 L digester. The digester was operated at different organic feeding rates of 25000 mg/L COD, 50000 mg/L COD, and 75000 mg/L COD. The material used in this system is the fruits waste, vegetables waste and cow dung. The system operated in continuous system. The reactor showed stable performance with the highest quality of methane (concentration about70.3% of CH4) and rate of biogas production is 38.1 L/day with COD reduction of 52.1% during organic loading rate 50000 mg/L COD. As the organic loading rate was increased, the COD degradation and biogas yield decreased. Based on this result, the OLR of 50000 mg/L COD is suggested as design criteria for pilot biogas production.

2018 ◽  
Vol 7 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Agus Haryanto ◽  
Sugeng Triyono ◽  
Nugroho Hargo Wicaksono

The efficiency of biogas production in semi-continuous anaerobic digester is influenced by several factors, among other is loading rate. This research aimed at determining the effect of hydraulic retention time (HRT) on the biogas yield. Experiment was conducted using lab scale self-designed anaerobic digester of 36-L capacity with substrate of a mixture of fresh cow dung and water at a ratio of 1:1. Experiment was run with substrate initial amount of 25 L and five treatment variations of HRT, namely 1.31 gVS/L/d (P1), 2.47 gVS/L/d (P2), 3.82 gVS/L/d (P3), 5.35 gVS/L/d (P4) and 6.67 gVS/L/d (P5). Digester performance including pH, temperature, and biogas yield was measured every day. After stable condition was achieved, biogas composition was analyzed using a gas chromatograph. A 10-day moving average analysis of biogas production was performed to compare biogas yield of each treatment. Results showed that digesters run quite well with average pH of 6.8-7.0 and average daily temperature 28.7-29.1. The best biogas productivity (77.32 L/kg VSremoval) was found in P1 treatment (organic loading rate of 1.31 g/L/d) with biogas yield of 7.23 L/d. With methane content of 57.23% treatment P1 also produce the highest methane yield. Biogas production showed a stable rate after the day of 44. Modified Gompertz kinetic equation is suitable to model daily biogas yield as a function of digestion time.Article History: Received March 24th 2018; Received in revised form June 2nd 2018; Accepted June 16th 2018; Available onlineHow to Cite This Article: Haryanto, A., Triyono, S., and Wicaksono, N.H. (2018) Effect of Loading Rate on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester. Int. Journal of Renewable Energy Development, 7(2), 93-100.https://doi.org/10.14710/ijred.7.2.93-100


Author(s):  
Ejiroghene Kelly Orhorhoro ◽  
Patrick Okechukwu Ebunilo ◽  
Godwin Ejuvwedia Sadjere

The rate at which feedstock is added to the anaerobic digester (AD) reactor has to be adjusted for the growth rate of methanogens bacteria. Increase in biogas yield is as a result of improved mathanogens forming bacteria. Under loading and over loading of feedstock in the AD reactor has effect on methanogens forming bacteria. If more feedstock is added than the bacteria are able to degrade, the process will become acidic. Feedstock has to been fed to the reactor at a uniform rate and volume. If feeding pattern has to change, this must be done gradually so that bacteria can adapt to the new conditions. For optimum biogas yield, required amount of feedstock must be added to the AD reactor. The aim of this research work is to determine the effect of organic loading rate (OLR) on biogas yield from food waste, water hyacinth, cow dung, waste water from abattoir, poultry dropping and pig dung. The experimental set up comprises of single stage and three-stage continuous AD reactors. The same quantity and composition of feedstock were used and this was subjected to a variation of OLR 0.5 kg/m3(1.5 kg/m3, 2 kg/m3, 2.5 kg/m3, and 3 kg/m3). The experiment was conducted within a mesophilic temperature range of 36°C-37°C, percentage total solid (%TS) of 9.98% and percentage volatile solid (%VS) of 78%. pH meter was used to monitored the daily pH reading of the slurry. It was observed that the quantity of biogas yield from the feedstock increases with increasing organic load rate to the optimum value of 1.5 kg/m3and started decreasing above the optimum value for a single stage AD reactor but this was not the case for the three-stages continuous AD reactors that experienced continuous increase in biogas yield with a successive increase in OLR from 1-5 kg/m3-3.0 kg/m3.


2011 ◽  
Vol 29 (11) ◽  
pp. 1171-1176 ◽  
Author(s):  
Thomas Schmidt

Oil production from Jatropha curcas L. seeds generates large amounts of Jatropha press cake (JPC) which can be utilized as a substrate for biogas production. The objective of this work was to investigate anaerobic mono-digestion of JPC and the effects of an iron additive (IA) on gas quality and process stability during the increase of the organic loading rate (OLR). With the increase of the OLR from 1.3 to 3.2 gVS L−1 day−1, the biogas yield in the reference reactor (RR) without IA decreased from 512 to 194 LN kgVS−1 and the CH4 concentration decreased from 69.3 to 44.4%. In the iron additive reactor (IAR), the biogas yield decreased from 530 to 462 LN kgVS−1 and the CH4 concentration decreased from 69.4 to 61.1%. The H2S concentration in the biogas was reduced by addition of the IA to values below 258 ppm in the IAR while H2S concentration in the RR increased and exceeded the detection limit of 5000 ppm. The acid capacity (AC) in the RR increased to more than 20 g L−1, indicating an accumulation of organic acids caused by process instability. AC values in the IAR remained stable at values below 5 g L−1. The results demonstrate that JPC can be used as sole substrate for anaerobic digestion up to an OLR of 2.4 gVS l−1 day−1. The addition of IA has effectively decreased the H2S content in the biogas and has improved the stability of the anaerobic process and the biogas quality.


2021 ◽  
Author(s):  
◽  
Edward Kwaku Armah

With the increasing demand for clean and affordable energy which is environmentally friendly, the use of renewable energy sources is a way for future energy generation. South Africa, like most countries in the world are over-dependent on the use of fossil fuels, prompting most current researchers to seek an affordable and reliable source of energy which is also,a focal point of the United Nations Sustainable Development Goal 7. In past decades, the process of anaerobic digestion (AD) also referred to as monodigestion, has proven to be efficient with positive environmental benefits for biogas production for the purpose of generating electricity, combined heat and power. However, due to regional shortages, process instability and lower biogas yield, the concept of anaerobic co-digestion (AcoD) emerged to account for these drawbacks. Given the considerable impact that industrial wastewater (WW) could provide nutrients in anaerobic biodigesters, the results of this study could apprise decisionmakers and the government to further implement biogas installations as an alternative energy source. The study aims at optimising the biogas production through AcoD of the agricultural biomasses: sugarcane bagasse (SCB) and corn silage (CS) with industrial WW sourced from Durban, KwaZulu-Natal, South Africa. The study commenced with the characterisation of the biomasses under this study with proximate and ultimate analysis using the Fourier transform infrared spectroscopy (FTIR), the thermo gravimetric analysis (TGA), the scanning electron microscopy (SEM) and the differential scanning calorimetry (DSC). The untreated biomass was subjected to biochemical methane potential (BMP) tests to optimise and predict the biogas potential for the selected biomass. A preliminary run was carried out with the agricultural biomass to determine which of the WW streams would yield the most biogas. Among the four WW streams sourced at this stage, two WW streams; sugar WW (SWW) and dairy WW (DWW) produced the highest volume of biogas in the increasing order; SWW ˃ DWW ˃ brewery WW > municipal WW. Therefore, both SWW and DWW were selected for further process optimisation with each biomass. Using the response surface methodology (RSM), the factors considered were temperature (25-55 °C) and organic loading rate (0.5-1.5 gVS/100mL); and the response was the biogas yield (m3 /kgVS). Maximum biogas yield and methane (CH4) content were found to be 5.0 m3 /kgVS and 79%, respectively, for the AcoD of CS with SWW. This established the association that existed among the set temperatures of the digestion process and the corresponding organic loading rate (OLR) of the AcoD process operating in batch mode. Both CS and SCB have been classified as lignocellulosic and thus, ionic liquid (IL) pretreatment was adapted in this study to ascertain their potential on the biogas yield. Results showed that the maximum biogas yield and CH4 content were found to be 3.9 m3 /kgVS and 87%, respectively, after IL pretreatment using 1-ethyl-3-methylimidazolium acetate ([Emim][OAc]) for CS with DWW at 55°C and 1.0 gVS/100mL. The IL pretreatment yielded lower biogas but of higher purity of CH4 than the untreated biomass. Data obtained from the BMP tests for the untreated and pretreated biomasses were tested with the existing kinetic models; first order, dual pooled first order, Chen and Hashimoto and the modified Gompertz. The results showed that for both untreated and pretreated biomass, the modified Gompertz had the best fit amongst the four models tested with coefficient of correlation, R 2 values of 0.997 and 0.979, respectively. Comparatively, the modified Gompertz model could be the preferred model for the study of industrial WW when used as co-substrate during AcoD for biogas production. The study showed that higher biogas production and CH4 contents were observed when CS was employed as a reliable feedstock with maximum volume of the untreated and pretreated feedstock reported at 31 L and 20 L respectively.


2016 ◽  
Vol 10 (2) ◽  
pp. 43
Author(s):  
Baruna Sakti Wicaksono Bonanza ◽  
Sarto Sarto

Biohydrogen is a potential alternative energy generated through the process of dark fermentation of organic waste. This research aims to determine the effect of organic loading rate (OLR) variations of orange waste on biohydrogen production. This research dealt with the production of biohydrogen in the continuous system. The reactor was equipped with circulation and operated anaerobically. The inoculum was taken from the sludge of the biogas installation in Gemah Ripah Fruit Market. Orange waste was used in three variations of organic loading rate (OLR) at 2.2, 2.5, and 3.1 L/day. The results revealed that the daily productions of gas for those OLR are about 15, 35, and 26 L/day respectively. Futhermore, for OLR of 2.5 L/day the total solid decreased from about 8 to 5%. Keywords: Biohydrogen, dark fermentation, orange waste, organic loading rate Biohidrogen merupakan salah satu jenis energi alternatif yang dapat dihasilkan dari proses fermentasi gelap (dark fermentation) sampah organik. Penelitian ini bertujuan untuk mengetahui pengaruh variasi organic loading rate (OLR) sampah buah jeruk terhadap produksi biohidrogen. Pada penelitian ini produksi biohidrogen dilakukan menggunakan sistem kontinu. Reaktor yang digunakan dilengkapi dengan sirkulasi dan dijaga pada kondisi anaerob. Inokulum berasal dari sludge dari instalasi biogas Pasar Buah Gemah Ripah. Substrat yang digunakan adalah buah jeruk, sedangkan variabel yang dipelajari adalah OLR yang divariasikan sebesar 2,2; 2,5; dan 3,1 L/hari. Hasil penelitian menunjukkan bahwa produksi gas untuk OLR tersebut berturut-turut sekitar 15, 35, dan 26 L/hari. Pada OLR 2,5 L/hari, terjadi penurunan total solid dari sekitar 8% menjadi sekitar 5%. Kata kunci: Biohidrogen, dark fermentation, jeruk, organic loading rate


2012 ◽  
Vol 9 ◽  
pp. 57-62
Author(s):  
Fiza Sarwar ◽  
Wajeeha Malik ◽  
Muhammad Salman Ahmed ◽  
Harja Shahid

Abstract: This study was designed using actual effluent from the sugary mills in an Up-flow Anaerobic Sludge Blanket (UASB) Reactor to evaluate treatability performance. The reactor was started-up in step-wise loading rates beginning from 0.05kg carbon oxygen demand (COD)/m3-day to 3.50kg-COD/m3-day. The hydraulic retention time (HRT) was slowly decreased from 96 hrs to eight hrs. It was observed that the removal efficiency of COD of more than 73% can be easily achieved at an HRT of more than 16 hours corresponding to an average organic loading rate (OLR) of 3.0kg-COD/m3-day, at neutral pH and constant temperature of 29°C. The average VFAs (volatile fatty acids) and biogas production was observed as 560mg/L and 1.6L/g-CODrem-d, respectively. The average methane composition was estimated as 62%. The results of this study suggest that the treatment of sugar mills effluent with the anaerobic technology seems to be more reliable, effective and economical.DOI: http://dx.doi.org/10.3126/hn.v9i0.7075 Hydro Nepal Vol.9 July 2011 57-62


2011 ◽  
Vol 64 (2) ◽  
pp. 320-325 ◽  
Author(s):  
J. Gustavsson ◽  
B. H. Svensson ◽  
A. Karlsson

The aim of this study was to investigate the effect of trace element supplementation on operation of wheat stillage-fed biogas tank reactors. The stillage used was a residue from bio-ethanol production, containing high levels of sulfate. In biogas production, high sulfate content has been associated with poor process stability in terms of low methane production and accumulation of process intermediates. However, the results of the present study show that this problem can be overcome by trace element supplementations. Four lab-scale wheat stillage-fed biogas tank reactors were operated for 345 days at a hydraulic retention time of 20 days (37 °C). It was concluded that daily supplementation with Co (0.5 mg L−1), Ni (0.2 mg L−1) and Fe (0.5 g L−1) were required for maintaining process stability at the organic loading rate of 4.0 g volatile solids L−1 day−1.


2020 ◽  
Author(s):  
Dejene Tsegaye Bedane ◽  
Mohammed Mazharuddin Khan ◽  
Seyoum Leta Asfaw

Abstract Background : Wastewater from agro-industries such as slaughterhouse is typical organic wastewater with high value of biochemical oxygen demand, chemical oxygen demand, biological organic nutrients (Nitrogen and phosphate) which are insoluble, slowly biodegradable solids, pathogenic and non-pathogenic bacteria and viruses, parasite eggs. Moreover it contains high protein and putrefies fast leading to environmental pollution problem. This indicates that slaughterhouses are among the most environmental polluting agro-industries. Anaerobic digestion is a sequence of metabolic steps involving consortiums of several microbial populations to form a complex metabolic interaction network resulting in the conversation of organic matter into methane (CH 4 ), carbon dioxide (CO 2 ) and other trace compounds. Separation of the phase permits the optimization of the organic loading rate and HRT based on the requirements of the microbial consortiums of each phase. The purpose of this study was to optimize the working conditions for the hydrolytic - acidogenic stage in two step/phase anaerobic digestion of slaughterhouse wastewater. The setup of the laboratory scale reactor was established at Center for Environmental Science, College of Natural Science with a total volume of 40 liter (36 liter working volume and 4 liter gas space). The working parameters for hydrolytic - acidogenic stage were optimized for six hydraulic retention time 1-6 days and equivalent organic loading rate of 5366.43 – 894.41 mg COD/L day to evaluate the effect of the working parameters on the performance of hydrolytic – acidogenic reactor. Result : The finding revealed that hydraulic retention time of 3 day with organic loading rate of 1,788.81 mg COD/L day was a as an optimal working conditions for the parameters under study for the hydrolytic - acidogenic stage. The degree of hydrolysis and acidification were mainly influenced by lower hydraulic retention time (higher organic loading rate) and highest values recorded were 63.92 % at hydraulic retention time of 3 day and 53.26% at hydraulic retention time of 2 day respectively. Conclusion : The finding of the present study indicated that at steady state the concentration of soluble chemical oxygen demand and total volatile fatty acids increase as hydraulic retention time decreased or organic loading rate increased from 1 day hydraulic retention time to 3 day hydraulic retention time and decreases as hydraulic retention time increase from 4 to 6 day. The lowest concentration of NH 4 + -N and highest degree of acidification was also achieved at hydraulic retention time of 3 day. Therefore, it can be concluded that hydraulic retention time of 3 day/organic loading rate of 1,788.81 mg COD/L .day was selected as an optimal working condition for the high performance and stability during the two stage anaerobic digestion of slaughterhouse wastewater for the hydrolytic-acidogenic stage under mesophilic temperature range selected (37.5℃). Keywords : Slaughterhouse Wastewater, Hydrolytic – Acidogenic, Two Phase Anaerobic Digestion, Optimal Condition, Agro-processing wastewater


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2392 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Marta Kisielewska ◽  
Joanna Kazimierowicz

The aim of this study was the performance evaluation of anaerobic digestion of dairy wastewater in a multi-section horizontal flow reactor (HFAR) equipped with microwave and ultrasonic generators to stimulate biochemical processes. The effects of increasing organic loading rate (OLR) ranging from 1.0 g chemical oxygen demand (COD)/L·d to 4.0 g COD/L·d on treatment performance, biogas production, and percentage of methane yield were determined. The highest organic compounds removals (about 85% as COD and total organic carbon—TOC) were obtained at OLR of 1.0–2.0 g COD/L·d. The highest biogas yield of 0.33 ± 0.03 L/g COD removed and methane content in biogas of 68.1 ± 5.8% were recorded at OLR of 1.0 g COD/L·d, while at OLR of 2.0 g COD/L·d it was 0.31 ± 0.02 L/COD removed and 66.3 ± 5.7%, respectively. Increasing of the OLR led to a reduction in biogas productivity as well as a decrease in methane content in biogas. The best technological effects were recorded in series with an operating mode of ultrasonic generators of 2 min work/28 min break. More intensive sonication reduced the efficiency of anaerobic digestion of dairy wastewater as well as biogas production. A low nutrient removal efficiency was observed in all tested series of the experiment, which ranged from 2.04 ± 0.38 to 4.59 ± 0.68% for phosphorus and from 9.67 ± 3.36 to 20.36 ± 0.32% for nitrogen. The effects obtained in the study (referring to the efficiency of wastewater treatment, biogas production, as well as to the results of economic analysis) proved that the HFAR can be competitive to existing industrial technologies for food wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document