scholarly journals Pengaruh Variasi Organic Loading Rate Sampah Buah Jeruk terhadap Produksi Biohidrogen pada Reaktor Kontinu

2016 ◽  
Vol 10 (2) ◽  
pp. 43
Author(s):  
Baruna Sakti Wicaksono Bonanza ◽  
Sarto Sarto

Biohydrogen is a potential alternative energy generated through the process of dark fermentation of organic waste. This research aims to determine the effect of organic loading rate (OLR) variations of orange waste on biohydrogen production. This research dealt with the production of biohydrogen in the continuous system. The reactor was equipped with circulation and operated anaerobically. The inoculum was taken from the sludge of the biogas installation in Gemah Ripah Fruit Market. Orange waste was used in three variations of organic loading rate (OLR) at 2.2, 2.5, and 3.1 L/day. The results revealed that the daily productions of gas for those OLR are about 15, 35, and 26 L/day respectively. Futhermore, for OLR of 2.5 L/day the total solid decreased from about 8 to 5%. Keywords: Biohydrogen, dark fermentation, orange waste, organic loading rate Biohidrogen merupakan salah satu jenis energi alternatif yang dapat dihasilkan dari proses fermentasi gelap (dark fermentation) sampah organik. Penelitian ini bertujuan untuk mengetahui pengaruh variasi organic loading rate (OLR) sampah buah jeruk terhadap produksi biohidrogen. Pada penelitian ini produksi biohidrogen dilakukan menggunakan sistem kontinu. Reaktor yang digunakan dilengkapi dengan sirkulasi dan dijaga pada kondisi anaerob. Inokulum berasal dari sludge dari instalasi biogas Pasar Buah Gemah Ripah. Substrat yang digunakan adalah buah jeruk, sedangkan variabel yang dipelajari adalah OLR yang divariasikan sebesar 2,2; 2,5; dan 3,1 L/hari. Hasil penelitian menunjukkan bahwa produksi gas untuk OLR tersebut berturut-turut sekitar 15, 35, dan 26 L/hari. Pada OLR 2,5 L/hari, terjadi penurunan total solid dari sekitar 8% menjadi sekitar 5%. Kata kunci: Biohidrogen, dark fermentation, jeruk, organic loading rate

2015 ◽  
Vol 1115 ◽  
pp. 325-330
Author(s):  
Maizirwan Mel ◽  
Nadiah Mohd Suhuli ◽  
Avicenna ◽  
Sany Izan Ihsan ◽  
Ahmad Faris Ismail ◽  
...  

In this study, three different concentration of organic loading rate (OLR) were investigated to examine the effect of the change in the organic loading rate on the efficiency of the biogas production. Daily amount of biogas of different type of organic loading rate (OLR), rates of production of biogas, removal efficiencies of chemical oxygen demand (COD), total solid (TS) matter, volatile solids (VS) matter from the slurry were investigated in 30 days retention tyme using 50 L digester. The digester was operated at different organic feeding rates of 25000 mg/L COD, 50000 mg/L COD, and 75000 mg/L COD. The material used in this system is the fruits waste, vegetables waste and cow dung. The system operated in continuous system. The reactor showed stable performance with the highest quality of methane (concentration about70.3% of CH4) and rate of biogas production is 38.1 L/day with COD reduction of 52.1% during organic loading rate 50000 mg/L COD. As the organic loading rate was increased, the COD degradation and biogas yield decreased. Based on this result, the OLR of 50000 mg/L COD is suggested as design criteria for pilot biogas production.


2015 ◽  
Vol 197 ◽  
pp. 201-207 ◽  
Author(s):  
Simone D. Gomes ◽  
Lucas T. Fuess ◽  
Eduardo D. Penteado ◽  
Shaiane D.M. Lucas ◽  
Jackeline T. Gotardo ◽  
...  

2016 ◽  
Vol 11 (2) ◽  
pp. 413-422 ◽  
Author(s):  
D. L. Parry ◽  
L. Fillmore

Codigestion of organic waste with municipal wastewater sludge is growing rapidly. It has many benefits, including diversion of organic waste from landfills, increased renewable energy from biogas production, and potential for revenue from tipping fees. However, there are still barriers to greater widespread application of codigestion. Economics, need for collaboration between utilities, impacts on wastewater application, unsupportive regulations and risks to core wastewater treatment business are obstacles that slow wider adoption of codigestion throughout the world. The research presented analyzes the economic impacts of codigestion, predicts the additional biogas production, and determines the allowable organic loading rate and fats oils and grease (FOG) addition for stable digestion operation. The economic impacts were analyzed on a life cycle cost basis and presented in terms of required tipping fees for different organic wastes, electric rates and residuals handling costs. Standard biochemical methane potential tests were conducted to estimate biogas production from various organic wastes. The specific energy loading rate (SELR) was used to express the allowable organic loading rate. Results from the economic analysis showed that codigestion using existing digesters at a municipal water reclamation facility is more economical than building new digesters. Codigestion was more economical at facilities with high electricity costs and low cost of residuals. Tipping fees for receiving organic waste would be required to offset the net cost of codigestion for wastes other than FOG. There was a net positive economic benefit of receiving FOG without a tipping fee. The upper limit of FOG for stable digestion was found to be 60 percent of the feed by chemical oxygen demand (COD). Stable digestion can be achieved with an SELR of less than 0.25 kgCOD/day/kgVS. The SELR accounts for the strength or energy content of the organic feed measured in COD. It was observed and accounted for by the SELR that anaerobic digesters loaded at higher solids concentrations (resulting in greater inventory of microorganisms in the digesters) can be fed at higher loading rates. Insights into the economics of codigestion and allowable organic loading rates for high strength organic wastes help to overcome some of the barriers to widespread application of codigestion.


2011 ◽  
Vol 356-360 ◽  
pp. 2020-2026 ◽  
Author(s):  
Ni Na Duan ◽  
Bin Dong ◽  
Qun Biao He ◽  
Xiao Hu Dai

High-solid anaerobic digestions of sewage sludge were investigated in completely stirred tank reactors (CSTR) at 35±1°C. The total solid (TS) concentrations of the sludge fed to the reactors were designed at 10%, 15% and 20% respectively after start-up periods. By start-up period is meant the TS concentration of the substrate in the reactor has not reached its designed level. Special attention was paid to the effect of organic loading rate (OLR), TS concentration, and ammonia inhibition on methane yield, volatile solid (VS) reduction and volatile fatty acid (VFA) concentration during the start-up periods. Experimental results showed that no evident inhibition of TS or ammonia was found as long as the concentration of TS was below 10% or the concentration of ammonia-N was below 2000 mg/l. Digestion at TS concentration of 12.5%-14.8% was slightly influenced by ammonia at concentration of 3200-3800 mg N/l. As the TS concentration was above 14.8%, the ammonia-N concentration of 3500-3800 mg/l showed evident inhibition on methanogetic activity, leading to sharp decrease of methane yield and methane content. After start-up, the methane yields at feeding TS of 10%, 15%, and 20% at OLR of 3.0 kg VS m-3d-3 were 0.221, 0.248 and 0.177 l CH4 g-1VSadded-1 d-1, and the VS reduction were 33%, 39.5% and 40%, respectively.


1999 ◽  
Vol 40 (8) ◽  
pp. 229-236 ◽  
Author(s):  
F. Fdz-Polanco ◽  
M. D. Hidalgo ◽  
M. Fdz-Polanco ◽  
P. A. García Encina

In the last decade Polyethylene Terephthalate (PET) production is growing. The wastewater of the “Catalana de Polimers” factory in Barcelona (Spain) has two main streams of similar flow rate, esterification (COD=30,000 mg/l) and textile (COD=4000 mg/l). In order to assess the anaerobic treatment viability, discontinuous and continuous experiments were carried out. Discontinuous biodegradability tests indicated that anaerobic biodegradability was 90 and 75% for esterification and textile wastewater. The textile stream revealed some tendency to foam formation and inhibitory effects. Nutrients, micronutrients and alkali limitations and dosage were determined. A continuous lab-scale UASB reactor was able to treat a mixture of 50% (v) esterification/textile wastewater with stable behaviour at organic loading rate larger than 12 g COD/l.d (0.3 g COD/g VSS.d) with COD removal efficiency greater than 90%. The start-up period was very short and the recuperation after overloading accidents was quite fast, in spite of the wash-out of solids. From the laboratory information an industrial treatment plant was designed and built, during the start-up period COD removal efficiencies larger than 90% and organic loading rate of 0.6 kg COD/kg VSS.d (5 kg COD/m3.d) have been reached.


2000 ◽  
Vol 42 (12) ◽  
pp. 115-121 ◽  
Author(s):  
B. Wang ◽  
Y. Shen

A study on the performance of an Anaerobic Baffled Reactor(ABR) as a hydrolysis-acidogenesis unit in treating the mixed wastewater of landfill leachate and municipal sewage in different volumetric ratios was carried out. The results showed that ABR substantially improved the biological treatability of the mixed wastewater by increasing its BOD5/COD ratio to 0.4–0.6 from the initial values of 0.15–0.3. The formation of bar-shaped granular sludge of 0.5–5 mm both in diameter and length with an SVI of 7.5–14.2 ml/g was observed in all compartments of the ABR when the organic loading rate reached 4.71 kgCOD/m3 · d. The effects of the ratios of NH4+-N/COD and COD/TP in mixed wastewater on the operational performance were also studied, from which it was found that a reasonable NH4+-N/COD ratio should be lower than 0.02, and the phosphorus supplement was needed when the volumetric ratio was higher than 4:6 for stable operation of ABR.


2021 ◽  
Vol 123 ◽  
pp. 52-59
Author(s):  
L. Megido ◽  
L. Negral ◽  
Y. Fernández-Nava ◽  
B. Suárez-Peña ◽  
P. Ormaechea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document