scholarly journals Evaluation of Anaerobic Digestion of Dairy Wastewater in an Innovative Multi-Section Horizontal Flow Reactor

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2392 ◽  
Author(s):  
Marcin Dębowski ◽  
Marcin Zieliński ◽  
Marta Kisielewska ◽  
Joanna Kazimierowicz

The aim of this study was the performance evaluation of anaerobic digestion of dairy wastewater in a multi-section horizontal flow reactor (HFAR) equipped with microwave and ultrasonic generators to stimulate biochemical processes. The effects of increasing organic loading rate (OLR) ranging from 1.0 g chemical oxygen demand (COD)/L·d to 4.0 g COD/L·d on treatment performance, biogas production, and percentage of methane yield were determined. The highest organic compounds removals (about 85% as COD and total organic carbon—TOC) were obtained at OLR of 1.0–2.0 g COD/L·d. The highest biogas yield of 0.33 ± 0.03 L/g COD removed and methane content in biogas of 68.1 ± 5.8% were recorded at OLR of 1.0 g COD/L·d, while at OLR of 2.0 g COD/L·d it was 0.31 ± 0.02 L/COD removed and 66.3 ± 5.7%, respectively. Increasing of the OLR led to a reduction in biogas productivity as well as a decrease in methane content in biogas. The best technological effects were recorded in series with an operating mode of ultrasonic generators of 2 min work/28 min break. More intensive sonication reduced the efficiency of anaerobic digestion of dairy wastewater as well as biogas production. A low nutrient removal efficiency was observed in all tested series of the experiment, which ranged from 2.04 ± 0.38 to 4.59 ± 0.68% for phosphorus and from 9.67 ± 3.36 to 20.36 ± 0.32% for nitrogen. The effects obtained in the study (referring to the efficiency of wastewater treatment, biogas production, as well as to the results of economic analysis) proved that the HFAR can be competitive to existing industrial technologies for food wastewater treatment.

2018 ◽  
Vol 65 ◽  
pp. 05025 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Biplob Kumar Pramanik ◽  
Shahrom Bindi Md Zain

Solid organic wastes create potential risks to environmental pollution and human health due to the uncontrolled discharge of huge quantities of hazardous wastes from numerous sources. Now-a-days, anaerobic digestion (AD) is considered as a verified and effective alternative compared to other techniques for treating solid organic waste. The paper reviewed the biological process and parameters involved in the AD along with the factors could enhance the AD process. Hydrolysis is considered as a rate-limiting phase in the complex AD process. The performance and stability of AD process is highly influenced by various operating parameters like temperature, pH, carbon and nitrogen ratio, retention time, and organic loading rate. Different pre-treatment (e.g. mechanical, chemical and biological) could enhance the AD process and the biogas yield. Co-digestion can also be used to provide suitable nutrient balance inside the digester. Challenges of the anaerobic digestion for biogas production are also discussed.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 487-492 ◽  
Author(s):  
Y. Shang ◽  
B.R. Johnson ◽  
R. Sieger

A steady-state implementation of the IWA Anaerobic Digestion Model No. 1 (ADM1) has been applied to the anaerobic digesters in two wastewater treatment plants. The two plants have a wastewater treatment capacity of 76,000 and 820,000 m3/day, respectively, with approximately 12 and 205 dry metric tons sludge fed to digesters per day. The main purpose of this study is to compare the ADM1 model results with full-scale anaerobic digestion performance. For both plants, the prediction of the steady-state ADM1 implementation using the suggested physico-chemical and biochemical parameter values was able to reflect the results from the actual digester operations to a reasonable degree of accuracy on all parameters. The predicted total solids (TS) and volatile solids (VS) concentration in the digested biosolids, as well as the digester volatile solids destruction (VSD), biogas production and biogas yield are within 10% of the actual digester data. This study demonstrated that the ADM1 is a powerful tool for predicting the steady-state behaviour of anaerobic digesters treating sewage sludges. In addition, it showed that the use of a whole wastewater treatment plant simulator for fractionating the digester influent into the ADM1 input parameters was successful.


Author(s):  
Fei Wang ◽  
Mengfu Pei ◽  
Ling Qiu ◽  
Yiqing Yao ◽  
Congguang Zhang ◽  
...  

Poultry manure is the main source of agricultural and rural non-point source pollution, and its effective disposal through anaerobic digestion (AD) is of great significance; meanwhile, the high nitrogen content of chicken manure makes it a typical feedstock for anaerobic digestion. The performance of chicken-manure-based AD at gradient organic loading rates (OLRs) in a continuous stirred tank reactor (CSTR) was investigated herein. The whole AD process was divided into five stages according to different OLRs, and it lasted for 150 days. The results showed that the biogas yield increased with increasing OLR, which was based on the volatile solids (VS), before reaching up to 11.5 g VS/(L·d), while the methane content was kept relatively stable and maintained at approximately 60%. However, when the VS was further increased to 11.5 g VS/(L·d), the total ammonia nitrogen (TAN), pH, and alkalinity (CaCO3) rose to 2560 mg·L−1, 8.2, and 15,000 mg·L−1, respectively, while the volumetric biogas production rate (VBPR), methane content, and VS removal efficiency decreased to 0.30 L·(L·d)−1, 45%, and 40%, respectively. Therefore, the AD performance immediately deteriorated and ammonia inhibition occurred. Further analysis demonstrated that the microbial biomass yield and concentrations dropped dramatically in this period. These results indicated that the AD stayed steady when the OLR was lower than 11.5 g VS/(L·d); this also provides valuable information for improving the efficiency and stability of AD of a nitrogen-rich substrate.


2016 ◽  
Vol 14 (6) ◽  
pp. 1241-1254 ◽  
Author(s):  
Ousman R. Dibaba ◽  
Sandip K. Lahiri ◽  
Stephan T’Jonck ◽  
Abhishek Dutta

Abstract A pilot scale Upflow Anaerobic Contactor (UAC), based on upflow sludge blanket principle, was designed to treat vinasse waste obtained from beet molasses fermentation. An assessment of the anaerobic digestion of vinasse was carried out for the production of biogas as a source of energy. Average Organic loading rate (OLR) was around 7.5 gCOD/m3/day in steady state, increasing upto 8.1 gCOD/m3/day. The anaerobic digestion was conducted at mesophilic (30–37 °C) temperature and a stable operating condition was achieved after 81 days with average production of 65 % methane which corresponded to a maximum biogas production of 85 l/day. The optimal performance of UAC was obtained at 87 % COD removal, which corresponded to a hydraulic retention time of 16.67 days. The biogas production increased gradually with OLR, corresponding to a maximum 6.54 gCOD/m3/day (7.4 % increase from initial target). A coupled Artificial Neural Network-Differential Evolution (ANN-DE) methodology was formulated to predict chemical oxygen demand (COD), total suspended solids (TSS) and volatile fatty acids (VFA) of the effluent along with the biogas production. The method incorporated a DE approach for the efficient tuning of ANN meta-parameters such as number of nodes in hidden layer, input and output activation function and learning rate. The model prediction indicated that it can learn the nonlinear complex relationship between the parameters and able to predict the output of the contactor with reasonable accuracy. The utilization of the coupled ANN-DE model provided significant improvement to the study and helps to study the parametric effect of influential parameters on the reactor output.


2011 ◽  
Vol 29 (11) ◽  
pp. 1171-1176 ◽  
Author(s):  
Thomas Schmidt

Oil production from Jatropha curcas L. seeds generates large amounts of Jatropha press cake (JPC) which can be utilized as a substrate for biogas production. The objective of this work was to investigate anaerobic mono-digestion of JPC and the effects of an iron additive (IA) on gas quality and process stability during the increase of the organic loading rate (OLR). With the increase of the OLR from 1.3 to 3.2 gVS L−1 day−1, the biogas yield in the reference reactor (RR) without IA decreased from 512 to 194 LN kgVS−1 and the CH4 concentration decreased from 69.3 to 44.4%. In the iron additive reactor (IAR), the biogas yield decreased from 530 to 462 LN kgVS−1 and the CH4 concentration decreased from 69.4 to 61.1%. The H2S concentration in the biogas was reduced by addition of the IA to values below 258 ppm in the IAR while H2S concentration in the RR increased and exceeded the detection limit of 5000 ppm. The acid capacity (AC) in the RR increased to more than 20 g L−1, indicating an accumulation of organic acids caused by process instability. AC values in the IAR remained stable at values below 5 g L−1. The results demonstrate that JPC can be used as sole substrate for anaerobic digestion up to an OLR of 2.4 gVS l−1 day−1. The addition of IA has effectively decreased the H2S content in the biogas and has improved the stability of the anaerobic process and the biogas quality.


Author(s):  
Md. Nurul Islam Siddique ◽  
Zularisham A. Wahid

The effect of gradual increase in organic loading rate (0LR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance measured at hydraulic retention time (HRT) of4 to 2d, and start up procedure of the reactor was monitoredfor 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 “C Thermophilic condition was attained, and pH was adjusted at 7 i 0.5. Supreme COD removal competence was 98i0.5% (r = 0.84) at an 0LR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 C with high COD removal efficiency and biogas production. An 0LR of 7.5 g-COD/L d and HRT of 4 days were apposite forpetrochemical wastewater treatment.


Author(s):  
Oludare Johnson Odejobi ◽  
Oluwagbenga Abiola Olawuni ◽  
Samuel Olatunde Dahunsi ◽  
Akinbiyi Ayomikusibe John

The present study evaluates the influence of kitchen wastes on animal manures via anaerobic digestion for biogas production. The digestion was done using a digester with a capacity of 5L. The digester was loaded with the slurry of wastes prepared by mixing the wastes with water in ratio 1:1, and operated at mesophilic temperature of 37 ± 2°C for 30 days. The co-digestion of kitchen wastes with poultry droppings produced highest biogas yield (814.0 ml/kg VS fed) and the least (365.84 ml/kg VS fed) was from the co-digestion of kitchen wastes with the mixture of poultry droppings and cow dung. Composition analysis of the biogas showed the highest methane content (63.1%) from kitchen wastes and the lowest (56.2%) from co-digestion of kitchen wastes with poultry droppings. The pH range for optimum biogas production varied between 5.25 and 7.5. The study concluded that biogas yield from co-digestion of substrates, among other factors depends on the composition of participating substrates.


2012 ◽  
Vol 253-255 ◽  
pp. 897-902
Author(s):  
Li Jun Shi ◽  
Miao Huang ◽  
Wei Yu Zhang ◽  
Hui Fen Liu

In this paper anaerobic digestion of dairy manure and straw was conducted to produce biogas. Under the conditions of C/N=25-30 and T=36°C, five kinds of dry matter concentration of 20%, 15%, 10%, 5% and 2.5% were tested to investigate the effect of dry matter concentration on anaerobic digestion. The result showed that first 30 days was the biogas production peak phase and VFA concentrations in the leachate were also high during the same period. When dry matter concentration increased, biogas production appeared larger fluctuation, and alkalinity and NH4+-N concentration in the leachate also increased with higher organic loading rate. Among five kinds of dry matter concentration, 10% was more suitable for anaerobic digestion to produce biogas with total biogas production amount of 4710 mL after 30 days and volumetric biogas yield of 0.313 m3•m-3•d-1. These results could provide instructive meaning to the engineering application of dry anaerobic digestion.


2013 ◽  
Vol 856 ◽  
pp. 327-332 ◽  
Author(s):  
Apiwaj Janejadkarn ◽  
Orathai Chavalparit

The objective of this research was to evaluate the quantity of biogas production from napier grass (Pak Chong 1) (Pennisetum purpureum × Pennisetum americanum) in three identical continuously stirred tank reactor (CSTRs) at room temperature. The volatile solids feed was varied at 1.5, 2 and 3%, respectively. The organic loading rate was altered at 0.43, 0.57 and 0.86 kg VS/m3.d in CSTR 1, 2 and 3, respectively. Three laboratory scale CSTRs with working volume of 5 l were carried out. The results showed that the optimum volatile solids fraction was 2% VS with maximum biogas production of 0.529 m3/kg VS added. The methane production was achieved at 0.242 m3/kg VS added. Under this condition, the soluble chemical oxygen demand (SCOD) of the hydrolysate was increased by 74% and the SCOD and VS removal efficiency were obtained 52.52% and 55.98%, respectively. The highest total volatile fatty acid was obtained on day 12, which was 5.51 g/l and the highest concentration of HAc was 4.33 g/l. The results indicated that volatile solids fraction was 2% VS achieves a maximum biogas yield and can be successfully converted using anaerobic digestion and was investigated into economical and scalable.


2021 ◽  
Vol 11 (10) ◽  
pp. 4452
Author(s):  
Pranshu Bhatia ◽  
Masaaki Fujiwara ◽  
Maria Cecilia D. Salangsang ◽  
Jun Qian ◽  
Xin Liu ◽  
...  

In this study, semi-continuous anaerobic digestion of lignin-rich steam-exploded Ludwigia grandiflora (Lignin = 25.22% ± 4.6% total solids) was performed to understand better the effect of steam explosion on the substrate solubilisation and inhibitors formation during the process. Steam explosion pretreatment was performed at 180 °C for 30 min at a severity factor of 3.8 to enhance the biogas yield of the lignocellulosic biomass. The semi-continuous anaerobic digestion was performed in a continuously stirred tank reactor for 98 days at an initial hydraulic retention time of 30 days and an organic loading rate of 0.9 g-VS L−1day−1. The performed steam explosion pretreatment caused biomass solubilisation, resulting in enhanced biogas production during the process. During the anaerobic digestion process, the average biogas yield was 265 mL g-VS−1, and the pH throughout the operation was in the optimum range of 6.5–8.2. Due to fluctuations in the biogas yield, the hydraulic retention time and organic loading rate were changed on day 42 (50 days and 0.5 g-VS L−1day−1) and on day 49 (40 days and 0.7 g-VS L−1day−1), and 1 M of NaOH was added to the liquid fraction of the steam-exploded L. grandiflora during the latter part of the operation to maintain the stability in the reactor. Therefore, the steam explosion pretreatment helped in the degradation of L. grandiflora by breaking the lignocellulose structure. In addition, changes in the operating conditions of the anaerobic digestion led to an increase in the biogas production towards the end of the process, leading to the stability in the CSTR.


Sign in / Sign up

Export Citation Format

Share Document