A Computer-Aided-Design (CAD) System for Four-Step Three-Dimensional Braiding

2015 ◽  
Vol 1120-1121 ◽  
pp. 1429-1434
Author(s):  
Qi Wang ◽  
Jian Ming Wang

To estimate the precise mechanical properties of the three-dimensional (3D) braided composite, a geometric study is needed. Owing to the complexity of the yarn paths inside the preform, the geometric modeling for 3D braided composite is always time consuming. In this paper, an efficient method, namely preform boundary reflection (PBR) method, is proposed for motion model construction in geometric study. Furthermore, the CAD simulation system was developed for integral geometric descriptions of 3D braided preform with different parameters. Compared with the traditional method, the novel method significantly simplifies the simulation process without affecting the precision of geometric structure. As a result, the structure design for composite preform is effectively accelerated. The new method establishes the foundation of microstructure and mechanical properties analysis for the preforms with complex geometric structures.


2016 ◽  
Vol 11 (4) ◽  
pp. 155892501601100 ◽  
Author(s):  
Qi Wang ◽  
Ronghua Zhang ◽  
Jianming Wang ◽  
Yanan Jiao ◽  
Xiaohui Yang ◽  
...  

To estimate the precise mechanical properties of a three-dimensional (3D) braided composite, a geometric study is needed. Because of the complexity of the yarn paths inside the preform, the geometric modeling for 3D braided composites is always time consuming. In this paper, an efficient method, namely preform boundary reflection (PBR), is proposed for motion model construction in geometric studies. Furthermore, a CAD simulation system using novel combinations of parameters was developed for integral geometric descriptions of 3D braided preforms. Compared with the traditional method, the new method significantly simplifies the simulation process without affecting the precision of geometric structure. As a result, the structure design for composite preforms is effectively accelerated. The new method establishes a foundation for microstructure and mechanical properties analysis of preforms with complex geometric structures.





2006 ◽  
Vol 22 (03) ◽  
pp. 155-159
Author(s):  
Yasuhisa Okumoto ◽  
Kentaro Hiyoku ◽  
Noritaka Uesugi

The application of three-dimensional computer-aided design (CAD) is becoming more popular for design and production in many industrial fields, and digital manufacturing is spreading. With preconstruction simulation of the production process using a three-dimensional digital model, which is a core of a computer-integrated manufacturing (CIM) system, the efficiency and safety of production can be improved at each stage of work and optimization of manufacturing can be achieved. This paper first describes the concept of simulation-based production in shipbuilding and digital manufacturing. The three-dimensional CAD system is indispensable for effective simulation because the ship structure is three-dimensionally complex, and threedimensional viewer software enables workers to examine structures on a computer display. With simulation, computer-optimized manufacturing is possible. Simulation is most effective for jobs in which many parties must cooperate to handle structures or equipment of complex shape. Two-dimensional drawings are inadequate for imaging whole figures in such cases. Some examples of the successful applications in IHI Marine United, Inc., are shown: erection of a complex hull block, scaffolding planning, and installation of a rudder.



2007 ◽  
Vol 7 (4) ◽  
pp. 339-346 ◽  
Author(s):  
J. Schuler ◽  
J. Ketchel ◽  
P. Larochelle

In this paper, we present a novel web-based computer-aided modeling and manufacturing software tool for spherical mechanisms. Our purpose is to facilitate the analysis, dynamic simulation, and manufacture of one degree of freedom spherical four-bar mechanisms. First, a brief review of some of the current computer-aided design software for spherical four-bar mechanisms is presented. These software packages provide the three-dimensional visualization and computational capabilities necessary to synthesize and analyze spherical four-bar mechanisms. However, to date, no readily available and effective tools exist to aid in the modeling and manufacture of spherical mechanisms. Next, the kinematics of spherical four-bar mechanisms are reviewed as they pertain to their geometric modeling and manufacture. Finally, we present our web-based implementation of a computer-aided modeling, simulation, and manufacturing methodology for spherical four-bar mechanisms called SFBDESIGNER (for spherical four-bar designer). SFBDESIGNER facilitates the design, dynamic simulation, prototyping, and manufacture of spherical four-bar mechanisms.



Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 181 ◽  
Author(s):  
Dalibor Bartonek ◽  
Michal Buday

This article describes problems that occur when creating three-dimensional (3D) building models. The first problem is geometric accuracy; the next is the quality of visualization of the resulting model. The main cause of this situation is that current Computer-Aided Design (CAD) software does not have sufficient means to precision mapping the measured data of a given object in field. Therefore the process of 3D model creation is mainly a relatively high proportion of manual work when connecting individual points, approximating curves and surfaces, or laying textures on surfaces. In some cases, it is necessary to generalize the model in the CAD system, which degrades the accuracy and quality of field data. The article analyzes these problems and then recommends several variants for their solution. There are described two basic methods: using topological codes in the list of coordinates points and creating new special CAD features while using Python scripts. These problems are demonstrated on examples of 3D models in practice. These are mainly historical buildings in different locations and different designs (brick or wooden structures). These are four sacral buildings in the Czech Republic (CR): the church of saints Johns of Brno-Bystrc, the Church of St. Paraskiva in Blansko, further the Strejc’s Church in Židlochovice, and Church of St. Peter in Alcantara in Karviná city. All of the buildings were geodetically surveyed by terrestrial method while using total station. The 3D model was created in both cases in the program AUTOCAD v. 18 and MicroStation.



Author(s):  
Noha Shaaban ◽  
Fukuzo Masuda ◽  
Hesham Nasif ◽  
Masao Yamada ◽  
Hidenori Sawamura ◽  
...  

In a complex and huge system as in ITER fusion reactor, the creation of the geometrical input data of Monte Carlo (MC) codes such as MCNP is a highly exhausting task. Accordingly, it is a general approach to shift the geometric modeling into a computer aided design (CAD) system and to use an interface, which performs the exchange of CAD data into a representation appropriate for MC code. We have developed efficient algorithms and computer code, which are used to convert Parasolid format CAD files including solid and void data into MCNP input data. The CAD-MCNP conversion processes include creating surface equations; determining surface senses; constructing cell geometry and creating MCNP input file. This paper describes the basic algorithms used for the CAD/MCNP interface along with some applications for different geometries.



Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3325
Author(s):  
Valery Ochkov ◽  
Inna Vasileva ◽  
Ekaterina Borovinskaya ◽  
Wladimir Reschetilowski

This paper considers an approach towards the building of new classes of symmetric closed curves with two or more focal points, which can be obtained by generalizing classical definitions of the ellipse, Cassini, and Cayley ovals. A universal numerical method for creating such curves in mathematical packages is introduced. Specific aspects of the provided numerical data in computer-aided design systems with B-splines for three-dimensional modeling are considered. The applicability of the method is demonstrated, as well as the possibility to provide high smoothness of the curvature profile at the specified accuracy of modeling.





Author(s):  
Pierre M. Larochelle ◽  
Jason M. Schuler ◽  
John S. Ketchel

In this paper we present a web-based computer-aided design modeling and manufacturing methodology for spherical mechanisms. Our purpose is to facilitate the analysis, dynamic simulation, and manufacture of one degree of freedom spherical four-bar mechanisms. First, a brief review of some of the current computer-aided design (CAD) software for spherical four-bar mechanisms, e.g. SPHINX, SPHINXPC, ISIS, and OSIRIS is presented. These software packages provide the three-dimensional visualization and computational capabilities necessary to design spherical four-bar mechanisms. However, to date no readily available and effective tools exist to aid in the modeling and manufacture of spherical mechanisms. Next, the kinematics of spherical four-bar mechanisms are reviewed as they pertain to their geometric modeling and manufacture. Finally, we present our web-based implementation of a computer-aided modeling, simulation, and manufacturing methodology for spherical four-bar mechanisms called SPHINXCAM-Pro|E. SPHINXCAM-Pro|E, when used with the CAD tools mentioned above, facilitates the design, dynamic simulation, prototyping, and manufacture of spherical four-bar mechanisms.



Additive Manufacturing termed by ASTM standard referred to in short as, the technology of fabricating a model based on creating a three-dimensional Computer-Aided Design structure. In the context of developing a product from digital data directly, widely involved various technologies. Amongst them, one being Fused Deposition Modelling (FDM) which supervises the principle of AM, is widely known for developing a polymer-constructed sturdiest range of materials or parts are having operative mechanical properties. Even though, the main problem exaggerates that, the quality of the output still denies due to which void parts are created from bubbles trapped leading to failure of parts under mechanical stresses. Since with 15% infill, stronger parts are estimated and their mechanical properties are studied. Since the work signifies the influence of 15% infill on mechanical properties in estimating stronger products by layered addition process. The experimental methodology is based on structural infill parameters determining goal in achieving and studying material mechanical properties.



Sign in / Sign up

Export Citation Format

Share Document