scholarly journals Effect of Infill Percentage on Properties of FDM Printed GPLA/PETGs

Additive Manufacturing termed by ASTM standard referred to in short as, the technology of fabricating a model based on creating a three-dimensional Computer-Aided Design structure. In the context of developing a product from digital data directly, widely involved various technologies. Amongst them, one being Fused Deposition Modelling (FDM) which supervises the principle of AM, is widely known for developing a polymer-constructed sturdiest range of materials or parts are having operative mechanical properties. Even though, the main problem exaggerates that, the quality of the output still denies due to which void parts are created from bubbles trapped leading to failure of parts under mechanical stresses. Since with 15% infill, stronger parts are estimated and their mechanical properties are studied. Since the work signifies the influence of 15% infill on mechanical properties in estimating stronger products by layered addition process. The experimental methodology is based on structural infill parameters determining goal in achieving and studying material mechanical properties.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wiktoria Maria Wojnarowska ◽  
Jakub Najowicz ◽  
Tomasz Piecuch ◽  
Michał Sochacki ◽  
Dawid Pijanka ◽  
...  

Purpose Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine. Design/methodology/approach The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method. Findings The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals. Research limitations/implications The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner. Originality/value No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.


2019 ◽  
Vol 25 (5) ◽  
pp. 857-863
Author(s):  
Fusong Yuan ◽  
Yao Sun ◽  
Lei Zhang ◽  
Yuchun Sun

Purpose The purpose of this paper is to establish a chair-side design and production method for a tooth-supported fixed implant guide and to evaluate its accuracy. Design/methodology/approach Three-dimensional (3D) data of the alveolar ridge, adjacent teeth and antagonistic teeth were acquired from models of the edentulous area of 30 patients. The implant guides were then constructed using self-developed computer-aided design software and chair-side fused deposition modelling 3D-printing and positioned on a dental model. A model scanner was used to acquire 3D data of the positioned implant guides, and the overall error was then evaluated. Findings The overall error was 0.599 ± 0.146 mm (n = 30). One-way ANOVA revealed no statistical differences among the 30 implant guides. The gap between the occlusal surface of the teeth covering and the tissue surface of the implant guide was measured. The maximum gap after positioning of the implant guide was 0.341 mm (mean, 0.179 ± 0.019 mm). The implanted axes of the printed implant guide and designed guide were compared in terms of overall, lateral and angular error, which were 0.104 ± 0.004 mm, 0.097 ± 0.003 mm, and 2.053° ± 0.017°, respectively. Originality/value The results of this study demonstrated that the accuracy of a new chair-side tooth-supported fixed implant guide can satisfy clinical requirements.


2013 ◽  
Vol 581 ◽  
pp. 292-297 ◽  
Author(s):  
Ludmila Novakova-Marcincinova ◽  
Jozef Novak-Marcincin ◽  
Miroslav Janak

Rapid Prototyping (RP) can be defined as a group of techniques used to quickly fabricate a scale model of a part or assembly using three-dimensional computer aided design (CAD) data. What is commonly considered to be the first RP technique, Stereolithography, was developed by 3D Systems of Valencia, CA, USA. In this contribution are presented basic characteristics and problems in area of technology of Rapid Prototyping with use of Fused Deposition Modelling. It belongs to methods of precision model creation based on geometry obtained from CAD environment. Chapters are focused on optimization of FDM technology preparation process with aim of maximal precision of the parts. There also is algorithm that leads to selection of suitable settings for these problems. There are outputs in form of graph and tables accumulating information directly affecting precision aspects of manufacturing.


2015 ◽  
Vol 35 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Hu Qiao ◽  
Rong Mo ◽  
Ying Xiang

Purpose – The purpose of this paper is to establish an adaptive assembly, to realize the adaptive changing of the models and to improve the flexibility and reliability of assembly change. For a three-dimensional (3D) computer-aided design (CAD) assembly in a changing process, there are two practical problems. One is delivering parameters’ information not smoothly. The other one is to easily destroy an assembly structure. Design/methodology/approach – The paper establishes associated parameters design structure matrix of related parts, and predicts possible propagation paths of the parameters. Based on the predicted path, structured storage is made for the affected parameters, tolerance range and the calculation relations. The study combines structured path information and all constrained assemblies to build the adaptive assembly, proposes an adaptive change algorithm for assembly changing and discusses the extendibility of the adaptive assembly. Findings – The approach would improve the flexibility and reliability of assembly change and be applied to different CAD platform. Practical implications – The examples illustrate the construction and adaptive behavior of the assembly and verify the feasibility and reasonability of the adaptive assembly in practical application. Originality/value – The adaptive assembly model proposed in the paper is an original method to assembly change. And compared with other methods, good results have been obtained.


Author(s):  
Александр Афанасьев ◽  
Afanasyev Afanasyev ◽  
Сергей Бригаднов ◽  
Sergey Brigadnov

The actual task in the field of computer-aided design of machine-building objects is to increase the level of automation of structural-parametric analysis of design solutions due to the repetition of their use, reducing the number of design operations and ensuring the corresponding competencies of designers. Developed methods and algorithms should ensure the acquisition of the necessary competencies for the designer for successful project activities in the field of computer-aided design, increasing the effectiveness of training. The system of analysis of design solutions should improve the quality of design solutions implemented in CAD KOMPAS-3D. In this paper, an overview of methods, systems and tools for analyzing design solutions implemented in the CAD-3D environment. The main features of such systems are described, their main disadvantages are identified: the lack of functions for determining non-optimal sequences of design operations, the inability to automatically rebuild a three-dimensional model of a machine-building product on the basis of analysis of the design model tree. A complex system for the analysis of project solutions and the training of a designer was developed and implemented, based on methods, models and algorithms for analysis and adaptive learning. The results of a computational experiment are presented, on the basis of which it can be concluded that the use of developed software enhances the efficiency and quality of the designer's training in the processes of constructing three-dimensional solid-state machine-building products in CAD KOMPAS-3D.


2021 ◽  
Vol 5 (2) ◽  
pp. 53
Author(s):  
Romario A Wicaksono ◽  
Eddy Kurniawan ◽  
M Khalid Syafrianto ◽  
Ramadhani Fadelandro Suratman ◽  
M Ridho Sofyandi

<p><em>The process of designing and manufacturing a Cartesian 3D printer model based on Fused Deposition Modelling (FDM) is carried out to produce a 3D printer machine that can perform the printing process accurately and quickly. In this research, the process is divided into three stages, namely designing using Computer-Aided Design (CAD) software, printing and assembling components of a 3D printer machine, and analysing the mechanical structure of a 3D printer machine. This 3D printer is designed to carry out the printing process with an area of 180x180x150 mm. Some components of 3D printing machines use Polylactic Acid (PLA). The simulation results based on the Finite Element Method show that the 3D printer engine is feasible to produce printing with a mass of 40% of the maximum possible load.</em></p>


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2792
Author(s):  
Mohammadreza Lalegani Dezaki ◽  
Mohd Khairol Anuar Mohd Ariffin

Fused deposition modeling (FDM) is commonly used to print different products with highly complex features. Process parameters for FDM are divided into controllable or uncontrollable parameters. The most critical ones are built orientation, layer thickness, infill pattern, infill density, and nozzle diameter. This study investigates the effects of combined infill patterns in 3D printed products. Five patterns (solid, honeycomb, wiggle, grid, and rectilinear) were combined in samples to analyze their effects on mechanical properties for tensile strength analysis. Polylactic acid (PLA) samples were printed in different build orientations through two directions: flat and on-edge. The limitation was that the software and machine could not combine the infill patterns. Thus, the patterns were designed and assembled in computer aided design (CAD) software. Finite element analysis (FEA) was used to determine the patterns’ features and results showed honeycomb and grid have the highest strength while their weights were lighter compared to solid. Moreover, 0° samples in both flat and on-edge direction had the strongest layer adhesion and the best quality. In contrast, perpendicular samples like 60° and 75° showed poor adhesion and were the weakest specimens in both flat and on-edge, respectively. In brief, by increasing the build orientation, the strength decreases in this study.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2456
Author(s):  
Demei Lee ◽  
Guan-Yu Wu

Three-dimensional (3D) printing is a manufacturing technology which creates three-dimensional objects layer-by-layer or drop-by-drop with minimal material waste. Despite the fact that 3D printing is a versatile and adaptable process and has advantages in establishing complex and net-shaped structures over conventional manufacturing methods, the challenge remains in identifying the optimal parameters for the 3D printing process. This study investigated the influence of processing parameters on the mechanical properties of Fused Deposition Modelling (FDM)-printed carbon fiber-filled polylactide (CFR-PLA) composites by employing an orthogonal array model. After printing, the tensile and impact strengths of the printed composites were measured, and the effects of different parameters on these strengths were examined. The experimental results indicate that 3D-printed CFR-PLA showed a rougher surface morphology than virgin PLA. For the variables selected in this analysis, bed temperature was identified as the most influential parameter on the tensile strength of CFR-PLA-printed parts, while bed temperature and print orientation were the key parameters affecting the impact strengths of printed composites. The 45° orientation printed parts also showed superior mechanical strengths than the 90° printed parts.


2021 ◽  
Vol 27 (2) ◽  
pp. 429-451
Author(s):  
Chrysoula Pandelidi ◽  
Tobias Maconachie ◽  
Stuart Bateman ◽  
Ingomar Kelbassa ◽  
Sebastian Piegert ◽  
...  

Purpose Fused deposition modelling (FDM) is increasingly being explored as a commercial fabrication method due to its ability to produce net or near-net shape parts directly from a computer-aided design model. Other benefits of technology compared to conventional manufacturing include lower cost for short runs, reduced product lead times and rapid product design. High-performance polymers such as polyetherimide, have the potential for FDM fabrication and their high-temperature capabilities provide the potential of expanding the applications of FDM parts in automotive and aerospace industries. However, their relatively high glass transition temperature (215 °C) causes challenges during manufacturing due to the requirement of high-temperature build chambers and controlled cooling rates. The purpose of this study is to investigate the mechanical properties of ULTEM 1010, an unfilled polyetherimide grade. Design/methodology/approach In this research, mechanical properties were evaluated through tensile and flexural tests. Analysis of variance was used to determine the significance of process parameters to the mechanical properties of the specimens, their main effects and interactions. The fractured surfaces were analysed by scanning electron microscopy and optical microscopy and porosity was assessed by X-ray microcomputed tomography. Findings A range of mean tensile and flexural strengths, 60–94 MPa and 62–151 MPa, respectively, were obtained highlighting the dependence of performance on process parameters and their interactions. The specimens were found to fracture in a brittle manner. The porosity of tensile samples was measured between 0.18% and 1.09% and that of flexural samples between 0.14% and 1.24% depending on the process parameters. The percentage porosity was found to not directly correlate with mechanical performance, rather the location of those pores in the sample. Originality/value This analysis quantifies the significance of the effect of each of the examined process parameters has on the mechanical performance of FDM-fabricated specimens. Further, it provides a better understanding of the effect process parameters and their interactions have on the mechanical properties and porosity of FDM-fabricated polyetherimide specimens. Additionally, the fracture surface of the tested specimens is qualitatively assessed.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 515 ◽  
Author(s):  
Essyrose Mathew ◽  
Juan Domínguez-Robles ◽  
Eneko Larrañeta ◽  
Dimitrios A. Lamprou

The rising rate of individuals with chronic kidney disease (CKD) and ineffective treatment methods for catheter-associated infections in dialysis patients has led to the need for a novel approach to the manufacturing of catheters. The current process requires moulding, which is time consuming, and coated catheters used currently increase the risk of bacterial resistance, toxicity, and added expense. Three-dimensional (3D) printing has gained a lot of attention in recent years and offers the opportunity to rapidly manufacture catheters, matched to patients through imaging and at a lower cost. Fused deposition modelling (FDM) in particular allows thermoplastic polymers to be printed into the desired devices from a model made using computer aided design (CAD). Limitations to FDM include the small range of thermoplastic polymers that are compatible with this form of printing and the high degradation temperature required for drugs to be extruded with the polymer. Hot-melt extrusion (HME) allows the potential for antimicrobial drugs to be added to the polymer to create catheters with antimicrobial activity, therefore being able to overcome the issue of increased rates of infection. This review will cover the area of dialysis and catheter-related infections, current manufacturing processes of catheters and methods to prevent infection, limitations of current processes of catheter manufacture, future directions into the manufacture of catheters, and how drugs can be incorporated into the polymers to help prevent infection.


Sign in / Sign up

Export Citation Format

Share Document