Evaluation on Interface Bonding of Thin Aluminum Clad Steel Strip

2015 ◽  
Vol 1120-1121 ◽  
pp. 967-972 ◽  
Author(s):  
Long Li ◽  
Xin Chen ◽  
De Jing Zhou ◽  
Chao Lan Tang

The bond strength were comparatively measured by tensile test, tension shear test and compression shear test in order to evaluate bonding behavior of thin aluminum clad steel strips bonded by cold rolling, and furthermore determine minimum stable reduction of clad strips. The morphologies after fracture were observed and analyzed using SEM (scanning electron microscope) and EDS (energy dispersive spectrometer). The results show that it is lower for the bond strength obtained by shear test than one obtained by tensile test, which largely attributes to different stress states during testing. Minimum stable reduction can be defined as one beyond which the fracture would completely occur at aluminum component layer instead of interface between components, which is suggested as 40-45% based on fracture feature of Al clad steel strip.

2020 ◽  
Vol 10 (9) ◽  
pp. 3284 ◽  
Author(s):  
Bin Xie ◽  
Jiaxiang Xue ◽  
Xianghui Ren ◽  
Wei Wu ◽  
Zhuangbin Lin

Adopting the cold metal transfer plus pulse (CMT + P) process, 316L stainless steel wire was treated with a single channel multi-layer deposition experiment under different linear energy. The microstructures of different regions on the deposited samples were observed by optical microscope and scanning electron microscope, and the element distribution in the structure was analyzed by energy dispersive spectrometer. The mechanical properties and microhardness were measured by tensile test method and microhardness tester, respectively, and the anisotropy of tensile strength in horizontal and vertical directions were calculated. Finally, the fracture morphology of the tensile samples were observed by SEM. Experiment results showed that when the difference between the actual and the optimal wire feeding speed matching the specific welding speed was too large, this led to an unstable deposition process as well as flow and collapse of weld bead metal, thus seriously deteriorating the appearance of the deposition samples. The results from metallographic micrograph showed that rapid heat dissipation of the substrate caused small grains to generate in the bottom region of deposition samples, then gradually grew up to coarse dendrites along the building direction in the middle and top region caused by the continuous heat accumulation during deposition. Tensile test results showed that with the increase of linear energy, the horizontal and vertical tensile strength of the as-deposited samples decreased. In addition, the higher linear energy would deteriorate the microstructure of as-deposited parts, including significantly increasing the tendency of oxidation and material stripping. The microhardness values of the bottom, middle and top regions of the samples fluctuated along the centerline of the cross-section, and the values showed a trend of decreasing first and then rising along the building direction. Meanwhile, the yield strength and tensile strength of each specimen showed obvious anisotropy due to unique grain growth morphology. On the whole, the results from this study prove that CMT+P process is a feasible MIG welding additive manufacturing method for 316L stainless steel.


2010 ◽  
Vol 145 ◽  
pp. 14-19
Author(s):  
Jian Qin ◽  
Qing Dong Zhang ◽  
Jie Tao Dai

The paper deals with numerical considerations of buckling phenomena in steel strip during rolling and leveling of sheet metal. The self-equilibrating stress states due to residual strains caused by the rolling process are calculated by the spline function method. The developed numerical model provides an estimation of buckling critical loads and wave configuration. It is shown how the waves observed on the strip sliding over or lying on a rigid plane, so one can provide information about the distribution of the differences in the plastic strains over the width of the strip which leads to the buckled configuration. The spline function method proposed in this paper is simpler and more convenient than traditional finite element method in the buckling analysis.


1987 ◽  
Vol 58 (4) ◽  
pp. 431-437 ◽  
Author(s):  
Ihab A. Hammad ◽  
Richard J. Goodkind ◽  
William W. Gerberich
Keyword(s):  

2013 ◽  
Vol 58 (4) ◽  
pp. 1007-1011 ◽  
Author(s):  
A. Winiowski ◽  
M. Rózanski

Abstract The research involved vacuum tests of brazing properties of silver filler metals, containing tin as well as tin and nickel, and used in brazing of chromium X6Cr17 and chromium-nickel X6CrNiTi18-10 stainless steels. The research also involved testing the strength and structural properties of brazed joints made of these steels. The tests were conducted on filler metals (silver brazing alloys) B-Ag68CuSn-730/755 (Ag68Cu28Sn4) and B-Ag65CuSnNi-740/767 (Ag65Cu28Sn5Ni2) and also, for comparative purposes, on the filler metal B-Ag72Cu-780 (Ag 272 according to PN-EN ISO 17672), most commonly applied in the vacuum brazing of high alloyed stainless steels. The brazing properties of the filler metals were tested by determining their wettability by means of the spreadability method. The strength of brazed joints made of the stainless steels was examined in a shear test. Research-related structural tests involved light and electron microscopy with an energy dispersive spectrometer (EDS). The comparative analysis of the properties of the filler metals revealed the positive impact of tin and nickel on the spreadability and wettability of the silver brazing alloys as well as on the quality and the shear strength of brazed joints.


Sign in / Sign up

Export Citation Format

Share Document