Treatment of Ammonia-Rich Swine Wastewater Using a Novel IOC-SBBR Process

2010 ◽  
Vol 113-116 ◽  
pp. 655-661
Author(s):  
Yong Ming Wu ◽  
Jin Bao Wan ◽  
Ji Hai Xiong ◽  
Shun Fa Wang ◽  
Ping Gu

To establish a cost-efficient wastewater treatment system for the ammonia-rich swine wastewater, a combined process consisting of Internal and outer Circulation (IOC) anaerobic reactor and Sequencing Batch Biofilm Reactor (SBBR) was developed in this study. The combined process could remove about 91.7% of COD and 86.4% of NH4+-N, but TN removal efficiency was undesired, the average TN removal rate was only 28.5%. The optimization of SBBR operation mode to increase the oxygen - anoxic alternating frequency was conducive to the combined process of COD, NH4+-N and the TN removal rate reached 95.6%, 95.4% and 78.6%, respectively. The combined process has high removal efficiency of high ammonia and organic wastewater, is attractive for the treatment of wastewater containing high strength ammonia and carbon.

2015 ◽  
Vol 73 (3) ◽  
pp. 662-668 ◽  
Author(s):  
Ting Lu ◽  
Biju George ◽  
Hong Zhao ◽  
Wenjun Liu

A pilot study was conducted to study the treatability of high-strength landfill leachate by a combined process including upflow anaerobic sludge blanket (UASB), carbon removal (C-stage) moving bed biofilm reactor (MBBR) and ANITA™ Mox process. The major innovation on this pilot study is the patent-pending process invented by Veolia that integrates the above three unit processes with an effluent recycle stream, which not only maintains the low hydraulic retention time to enhance the treatment performance but also reduces inhibiting effect from chemicals present in the high-strength leachate. This pilot study has demonstrated that the combined process was capable of treating high-strength leachate with efficient chemical oxygen demand (COD) and nitrogen removals. The COD removal efficiency by the UASB was 93% (from 45,000 to 3,000 mg/L) at a loading rate of 10 kg/(m3·d). The C-stage MBBR removed an additional 500 to 1,000 mg/L of COD at a surface removal rate (SRR) of 5 g/(m2·d) and precipitated 400 mg/L of calcium. The total inorganic nitrogen removal efficiency by the ANITA Mox reactor was about 70% at SRR of 1.0 g/(m2·d).


1996 ◽  
Vol 34 (7-8) ◽  
pp. 437-444 ◽  
Author(s):  
J. Dollerer ◽  
P. A. Wilderer

Bench-scale experiments with two different types of fixed bed reactor have been conducted in order to investigate the potential of SBBr technology (Sequencing Batch Biofilm Reactor) for treatment of leachates from different hazardous waste landfills. Reactor A was equipped with a membrane oxygenatition system for bubble free transfer of oxygen into the bulk liquid. In constract, reactor B was bubble aerated. The process was found to be remarkably stable. An average DOC removal rate of 68% was achieved with a 12-hour cycle. The emission of biodegradable volatile organic substances was observed to be significantly reduced by using bubble free aeration system.


2015 ◽  
Vol 71 (6) ◽  
pp. 832-839 ◽  
Author(s):  
O. Tiron ◽  
C. Bumbac ◽  
I. V. Patroescu ◽  
V. R. Badescu ◽  
C. Postolache

The study used activated algae granules for low-strength wastewater treatment in sequential batch mode. Each treatment cycle was conducted within 24 h in a bioreactor exposed to 235 μmol/m2/s light intensity. Wastewater treatment was performed mostly in aerobic conditions, oxygen being provided by microalgae. High removal efficiency of chemical oxygen demand (COD) was achieved (86–98%) in the first hours of the reaction phase, during which the indicator's removal rate was 17.4 ± 3.9 mg O2/g h; NH4+ was removed during organic matter degradation processes with a rate of 1.8 ± 0.6 mg/g h. After almost complete COD removal, the NH4+ remaining in the liquor was removed through nitrification processes promoted by the increase of the liquor's oxygen saturation (O2%), the transformation rate of NH4+ into NO3− increasing from 0.14 ± 0.05 to 1.5 ± 0.4 mg NH4+/g h, along with an O2% increase. A wide removal efficiency was achieved in the case of PO43– (11–85%), with the indicator's removal rate being 1.3 ± 0.7 mg/g h. In the provided optimum conditions, the occurrence of the denitrifying activity was also noticed. A large pH variation was registered (5–8.5) during treatment cycles. The granular activated algae system proved to be a promising alternative for wastewater treatment as it also sustains cost-efficient microalgae harvesting, with microalgae recovery efficiency ranging between 99.85 and 99.99% after granules settling with a velocity of 19 ± 3.6 m/h.


1997 ◽  
Vol 35 (1) ◽  
pp. 35-40 ◽  
Author(s):  
Hans-Peter Kaballo

This paper presents one performance of SBBRs to treat wastewater containing the priority organic pollutant para-chlorophenol (p-CP). Batch kinetic studies showed that the biological degradation of p-CP can be described with the model of the substrate inhibition analogue Haldane. The following parameters were found: Ks = 4.4 mg L−1, Ki = 60 mg L−1, rmax = 3.24 h−1. With this information the operation mode of a sequencing batch biofilm reactor was optimized when shock loading appeared. During a short fill of 12 minutes approximately 30 % of the influent amount was eliminated of the bulk. It is assumed that other effects than biodegradation were responsible for this, i.e. biosorption. During the reaction phase the turbulence had an important influence to the elimination rate. At a bulk fluid concentration of more than 60 mg L−1 the elimination process was controlled by microbial kinetics. But with decreasing concentration the mass transfer became more important. The elimination rate could be increased from 7.3 mg L h−1 to 26.3 mg L h−1 with a 5-fold higher air flow rate.


2020 ◽  
Vol 218 ◽  
pp. 03033
Author(s):  
Yafeng Li ◽  
Jianbo Wu ◽  
Yuemeng Bai ◽  
Ning Feng

In order to improve the efficiency of biological nitrogen removal, the experiment used the luffa cylindrical sponge carrier sequencing batch biofilm reactor to treat domestic sewage, and it studied the temperature on the removal effect of TN in the sewage in the reactor and the changes of various types of nitrogen. The results showed that the TN treatment rate of the luffa cylindrical sponge carrier SBBR reached the peak at 30 °C, the removal rate was 82.25%, indicating that the luffa cylindrical sponge carrier SBBR is very suitable for the removal of nitrogen from domestic sewage.


2013 ◽  
Vol 67 (3) ◽  
pp. 612-618 ◽  
Author(s):  
Chong Tan ◽  
Fang Ma ◽  
Shan Qiu

A sequencing batch biofilm reactor (SBBR) filled with polyurethane (PU) was operated in low dissolved oxygen (DO) (0.1–0.9 mg/L) at three different carbon to nitrogen ratios (C/N ratios) (C/N = 1.8:1, 5.0:1 and 10.5:1) with focus on reactor performance and microbial community composition of nitrifying and denitrifying bacteria. Meanwhile, the ammonium, nitrite, nitrate, pH and dissolved oxygen were analyzed to monitor the process of nitrification-denitrification. The reactor had a steady ammonium removal in spite of a large variation in the initial ammonium loading (the ammonium removal efficiency was 87.2% at C/N 1.8:1, 92.9% at C/N 5.0:1, 88.4% at C/N 10.5:1). However, the total nitrogen (TN) removal was strongly affected by the initial organic loading (the TN removal efficiency was 55.2% at C/N 1.8:1, 74.3% at C/N 5.0:1, 79.0% at C/N 10.5:1). It was indicated that higher organic load promoted denitrification. The real-time quantitative polymerase chain reaction (real-time qPCR) analysis shown that Beta-proteobacteria occupied over 35% numerically. As for the Nitrosomonas sp., Nitrosospira sp. and Nitrospira sp. gene copy numbers, their abundance was generally in the order of magnitude of 1010. The Nitrosospira sp. fluctuated significantly in the range of 3.1–9.8% at different C/N ratios, while the Nitrosomonas sp. just changed a little.


2012 ◽  
Vol 209-211 ◽  
pp. 2049-2052
Author(s):  
Chang Hang Wu ◽  
Wei Jun Zhang

A lab-scale sequencing batch biofilm reactor (SBBR) was developed to treat domestic wastewater. After one year’s operation, the results were obtained as follows: when the reaction carried out in 3 h, COD removal efficiency approached or reached the maximal value, up to 90%. The nitrification process of NH3-N needed 4 h, and NH3-N removal efficiency reached the maximal value. Moreover, according to the variation of TN , NO3--N and NO2--N concentration in the nitrification and denitrification process, when NH3-N degraded to zero or the minimal value, just two cycles ending, it means that the SBBR system completed the nitrification and denitrification process.


2015 ◽  
Vol 73 (7) ◽  
pp. 1511-1519 ◽  
Author(s):  
Khalid Muzamil Gani ◽  
Jasdeep Singh ◽  
Nitin Kumar Singh ◽  
Muntjeer Ali ◽  
Vipin Rose ◽  
...  

In this study, the effectiveness of polyvinyl alcohol (PVA) gel beads in treating domestic wastewater was investigated: a moving bed biofilm reactor (MBBR) configuration (oxic-anoxic and oxic) with 10% filling fraction of biomass carriers was operated in a continuously fed regime at temperatures of 25, 20, 15 and 6 °C with hydraulic retention times (HRTs) of 32 h, 18 h, 12 h and 9 h, respectively. Influent loadings were in the range of 0.22–1.22 kg N m−3 d−1 (total nitrogen (TN)), 1.48–7.82 kg chemical oxygen demand (COD) m−3 d−1 (organic) and 0.12–0.89 kg NH4+-N m−3d−1 (ammonia nitrogen). MBBR performance resulted in the maximum TN removal rate of 1.22 kg N m−3 d−1 when the temperature and HRT were 6 °C and 9 h, respectively. The carbon removal rate at this temperature and HRT was 6.82 kg COD m−3 d−1. Ammonium removal rates ranged from 0.13 to 0.75 kg NH4+-N m−3 d−1 during the study. Total phosphorus and suspended solid removal efficiency ranged from 84 to 98% and 85 to 94% at an influent concentration of 3.3–7.1 mg/L and 74–356 mg/L, respectively. The sludge wasted from the MBBR exhibited light weight features characterized by sludge volume index value of 185 mL/g. Experimental data obtained can be useful in further developing the concept of PVA gel based wastewater treatment systems.


Sign in / Sign up

Export Citation Format

Share Document