The Aging Properties of Bamboo-Poplar Composite Oriented Strand Board with Different Hybrid Ratios

2014 ◽  
Vol 599-601 ◽  
pp. 140-143 ◽  
Author(s):  
Xiang Fei Fu ◽  
Cheng Yong ◽  
Ming Jie Guan

In this paper, the bamboo-poplar composite oriented strand board (OSB) with different hybrid ratios were aged under the standard of ASTM D1037 to evaluate its weathering performances. The thickness swelling (TS), water absorption, modulus of rapture in perpendicular direction (MOR⊥), modulus of elasticity in perpendicular direction (MOE⊥) and internal bonding (IB) of specimens were tested. The results showed that the reduction rate of TS ranged from 21% to 69%, which increased with the poplar ratio increasing; the growth multiple of 24h water absorption of bamboo-poplar composite OSB were at the similar level, the values of which were much smaller than that of the pure bamboo or poplar OSB; the maximum and minimum retention rate of MOR⊥ and MOE⊥ belonged to pure bamboo and poplar OSB respectively, retention rate of MOR⊥ of the bamboo-poplar composite OSB rose with the increment of poplar ratio, while retention rate of MOE⊥ and IB of bamboo-poplar composite OSB were similar and the hybrid ratio 2.5:7.5(bamboo: poplar) obtained the maximum IB retention rate of 16%. Through detailed comparison, the bamboo-poplar composite OSB with the hybrid ratio 2.5:7.5 performed the best after aging.

2015 ◽  
Vol 1134 ◽  
pp. 116-122
Author(s):  
Roslan Ali ◽  
Mohamad Nurul Azman Mohammad Taib ◽  
Kamal Wok ◽  
Shawaluddin Tahiruddin ◽  
Mohd Amrin Abdullah

This study was done to investigate the effects of ozone treatment as a method to improve the properties of empty fruit bunch (EFB) medium density particleboard. Two types of EFB were used in this study i.e. screw pressed and non-screw pressed empty fruit bunch. These EFB were treated in an ozone chamber for 8 hours prior to particleboard manufacturing. The mechanical properties, Modulus of Elasticity (MOE), Modulus of Rupture (MOR) and Internal Bonding (IB) and physical properties, water Absorption (WA) and Thickness Swelling (TS) of EFB particleboard were determined. The results showed that the ozone treatment could increase the MOR and IB values of EFB particleboard, but had no significant effect on MOE values. For physical properties, the values showed no improvement for TS and WA. The panels manufactured using ozone treatment was found suitable for applications for furniture products.


2015 ◽  
Vol 1134 ◽  
pp. 34-38 ◽  
Author(s):  
Nurul Atiqah Mohd Ayob ◽  
Mansur Ahmad ◽  
Nurul Nadia Mohd Khairuddin

In this paper, three type of natural-fibre reinforced polyethylene were produced. They are the coconut coir reinforced polyethylene (RPCC), kenaf reinforced polyethylene (RPKC) and bamboo reinforced polyethylene (RPBC). Water absorption test, thickness swelling test and tensile test of the different natural fibre composites were carried-out. The mass of HDPE and natural fibre were based on percentage of filler loading. Each board types were produced with two fibre ratios which are at fourty percent and thirty percent. The preparation of the test sample is according to ASTM D1037 and ASTM D638. The tensile modulus of elasticity, tensile stress, water absorption and thickness swelling of kenaf and bamboo reinforced polyethylene composites were found to increase with increasing fibre weight fraction. Kenaf and bamboo composites showed compatible result for tensile stress and tensile modulus of elasticity while coconut coir appears to be otherwise. However, coconut coir fibre composites displayed comparable results to kenaf and bamboo for both water and thickness swelling. There were significant differences in both tensile properties and the percentage of the water absorption among composites.


2007 ◽  
Vol 18-19 ◽  
pp. 43-48 ◽  
Author(s):  
J.O. Osarenmwinda ◽  
J.C. Nwachukwu

The purpose of this study was to determine the effect of particle size on the mechanical properties (Modulus of Elasticity, Modulus of Rupture, and Internal Bond) and physical properties (thickness swelling and water absorption) of rice husk particleboard. The particle sizes used were 1.0mm, 1.18mm, 2mm, 2.36mm and 2.80mm. Each was mixed with a constant resin (urea formaldehyde) concentration of 20% of oven dry weight of rice husk particles. The results showed that as the particle size increased, the particleboard’s mechanical and physical properties decreased. For example, the modulus of elasticity, modulus of rupture, internal bond, thickness swelling and water absorption for 1.0mm particle size particleboard were 1590N/mm2, 11.11N/mm2, 0.28N/mm2,10.90% and 38.53% respectively, while for 2.8mm particle size they were 1958N/mm2,14.2N/mm2, 0.44N/mm2, 11.51% and 47.21% respectively. Overall results showed that particleboard made from rice husk exceed the EN standard for modulus of elasticity, modulus of rupture, internal bond. However, thickness swelling values were poor. Hence, the smaller the particle size the better the properties of the particleboard.


2021 ◽  
Vol 9 (3) ◽  
pp. 454-465
Author(s):  
Tengku Muhammad Renzy Hariz ◽  
Indra Agus Santosa ◽  
Muhammad Iqbal Maulana ◽  
Marwanto ◽  
Denni Prasetia ◽  
...  

The objectives of this research were to evaluate bamboo-oriented strand board (BOSB) characteristics made from betung (Dendrocalamus asper), ampel (Bambusa vulgaris), and their mixtures at two different contents (3% and 5%) of methylene diphenyl di-isocyanate (MDI) adhesives. The strands were steam-treated at 126°C for 1 h under the pressure of 0.14 MPa. Three-layered BOSBs with a target density of 0.7 g/cm3 were made with the size of 30 cm x 30 cm x 0.9 cm and a shelling ratio of 1:2:1 (face:core:back layers). The physical and mechanical properties of BOSB were evaluated following JIS A 5908 (2003) standard, and the results were compared with the CSA 0437.0 Grade O-1 standard. The results show that BOSB from the mixtures of betung and ampel bamboo strands has higher dimensional stability as shown by the decrease in water absorption and thickness swelling and higher mechanical properties than single BOSB. All BOSBs with 5% resin content have higher dimensional stability, MOE, and MOR than BOSB with 3% resin content. The physical and mechanical properties of all BOSB manufactured met the CSA 0437.0 Grade O-1 standard. This study proved that BOSBs from the mixture of betung and ampel strands have the potential to be developed due to having better physical and mechanical qualities than a single BOSB. Keywords: ampel (Bambusa vulgaris), bamboo oriented strand board, betung (Dendrocalamus asper), resin content, strand mixtures


2019 ◽  
Vol 8 (4) ◽  
pp. 6808-6812

This study investigate the effect of the board thickness and resin content on the properties of particleboard. Single-layered sawmill wastes and rubberwood particleboards bonded with urea formaldehyde (UF) resins were manufactured. The boards were fabricated with three different board thicknesses (15, 18 and 25mm) at three different resin contents (7, 8 and 9%). The boards produced were evaluated for their modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding (IB) and thickness swelling (TS) in accordance with the European Standards. Board thickness does affect the mechanical properties of particleboard. The study revealed that thinner boards gave higher MOE, MOR, IB and TS. No significant effects were found among three resin contents for MOE, MOR, IB and TS. It can be concluded that the particleboard made from mix tropical wood from sawmill waste and with rubberwood were suitable for particleboard manufacturing.


2016 ◽  
Vol 8 (2) ◽  
pp. 43-52 ◽  
Author(s):  
Djoko Purwanto

Oil palm empty fruit bunches (OPEFB) fiber were industrial waste that has not been widely used by the community, only stacked and cause odors that interfere with the surrounding environment. This research studied the utilization of OPEFB fiber for cement board products using cement as resin and CaCl2 as accelerator. Laboratory scale cement board made from OPEFB fiber were mixed with cement, and CaCl2. The composition of fiber and cement were 1:1, 1:1.5, 1:2, and CaCl2 variations were 0%, 1% and 3%. A mixture of fibers, cement and CaCl2 was compressed at the pressure of 4 ton for 24 hours. The cement boards were tested for physical and mechanical properties according to JIS A 5417-1992, and the results were compared to the requirements of the cement board JIS A 5417-1992. Cement board made from fiber and cement composition 1:1.5 and CaCl2 content 3% produced moisture content, thickness swelling, water absorption, density, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength that met the requirement of JIS A 5417-1992. The composition of fiber and cement and the variations of CaCl2 content produced significant effect on water content, water absorption, thickness swelling, modulus of rupture/MOR, modulus of elasticity/MOE and screw withdrawal strength on cement boards.Keywords : oil palm empty fruit bunches fiber, cement boards, physical and mechanical properties


2019 ◽  
Vol 16 (1) ◽  
pp. 44
Author(s):  
Odusote Jamiu Kolawole ◽  
Dosunmu Kayode Stephen

Cartons and chicken feathers are common wastes which we need to dispose in one way or another. Disposal problems associated with these wastes can be solved by processing them into useful products such as insulation and ceiling boards. In this study, chicken feather reinforced ceiling board was developed from waste carton and Portland cement. The quantity of the chicken feather was kept constant at 10% based on previous findings, while the cement and waste carton contents were varied to produce 5 samples of different compositions. The density of the board was found to range between 337.8 and 700.7 kg/m2, while the thickness swelling ranges between 0.81 and 9.02%. Water absorption values of the samples varied between 7.16 and 24.41%, while the compressive strength and modulus of elasticity values varied from 4.8 - 10.3 N/mm2 and 1.03 - 1.60 GPa, respectively. The values of modulus of rupture ranges between 1.34 and 2.2 MPa while the thermal conductivity of the samples ranges from 0.951 to 1.077 W/m.K. Density, compressive strength, modulus of elasticity, modulus of rupture and thermal conductivity of the samples increased as the cement content increased, while the thickness swelling and water absorption decreased with increase in cement content. The results revealed that the properties of ceiling boards developed from 80% cement, 10% carton and 10% chicken feather can compete favorably with most ceiling boards available in the market.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1450 ◽  
Author(s):  
Haiying Zhou ◽  
Ge Wang ◽  
Linbi Chen ◽  
Zhiming Yu ◽  
Lee M. Smith ◽  
...  

The objective of this study was to investigate the hygroscopic characteristics of three typical bamboo engineering composites (Bamboo scrimber (BS), bamboo bundle/wood laminated veneer lumber (BLVL), and bamboo laminated timber (BLT)) as well as predict their performance changes and service life in hot humid environments. The composites were subjected to three treatment conditions (23 °C, 63 °C, and 100 °C) for this experiment. The hygroscopic thickness swelling model and Fick’s second law were used to quantify the characterization and prediction of the water absorption, thickness swelling rate, and water absorption rate of BS, BLVL, and BLT. The results indicated that the order of the hygroscopic thickness swelling coefficient KSR and the diffusion coefficient D was BLT > BLVL > BS (at 23 °C and 63 °C). The optimal dimensional stability was displayed by BS, followed by BLVL and BLT. In addition to the hygroscopic properties, elastic modulus degradation was investigated. It was observed that the elastic modulus (MOR) degradation had a linear relationship with the aging temperature. After 152 h of the hydrothermal aging test (63 °C), the MOE of BS, BLVL, and BLT degraded by 44.33%, 53.89%, and 25.83%, respectively.


2020 ◽  
Vol 10 (18) ◽  
pp. 6340 ◽  
Author(s):  
Marius Cătălin Barbu ◽  
Thomas Sepperer ◽  
Eugenia Mariana Tudor ◽  
Alexander Petutschnigg

Walnut and hazelnut shells are agricultural by-products, available in high quantities during the harvest season. The potential of using these two agricultural residues as raw materials in particleboard production has been evaluated in this study. Different panels with either walnut or hazelnut shells in combination with melamine-urea formaldehyde or polyurethane at the same level of 1000 kg/m3 density were produced in a laboratory hot press and mechanical properties (modulus of elasticity, bending strength, and Brinell hardness) and physical properties (thickness swelling and water absorption) were determined, together with formaldehyde content. Although Brinell hardness was 35% to 65% higher for the nutshell-based panels, bending strength and modulus of elasticity were 40% to 50% lower for the melamine-urea formaldehyde bonded nutshells compared to spruce particleboards, but was 65% higher in the case of using polyurethane. Water absorption and thickness swelling could be reduced significantly for the nutshell-based boards compared to the spruce boards (the values recorded ranged between 58% to 87% lower as for the particleboards). Using polyurethane as an adhesive has benefits for water uptake and thickness swelling and also for bending strength and modulus of elasticity. The free formaldehyde content of the lignocellulosic-based panels was included in the E0 category (≤2.5 mg/100 g) for both walnut and hazelnut shell raw materials and the use of polyurethane improved these values to super E0 category (≤1.5 mg/100 g).


BioResources ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 464-476
Author(s):  
Yanhua Zhang ◽  
Jiyou Gu ◽  
Haiyan Tan ◽  
Mingwei Di ◽  
Libin Zhu ◽  
...  

Environmentally friendly particleboard was prepared with wheat straw, an inexpensive material. The particleboard was produced by a mixing process, using a composite adhesive comprised of urea-formaldehyde (UF) adhesives and EPU. The performance of the board was evaluated by measuring internal bonding strength (IB), thickness swelling, modulus of rupture (MOR), modulus of elasticity (MOE), and formaldehyde emission. The experimental results showed that maximum of dry and wet internal bonding strength, modulus of rupture, modulus of elasticity were 0.45MPa, 0.18MPa, 31.80MPa, and 5043MPa, respectively. The thickness swelling (TS2h) and thickness swelling (TS24h) were 3.9% and 10.7%, respectively. The composite adhesives and particleboards were measured by differential scanning calorimentry (DSC), dynamic mechanical analyzer (DMA), X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM) measurements. The results indicated that the composite adhesive of UF/EPU could contribute to excellent mechanical, thermal, and water-resistant properties of the wheat straw particleboards.


Sign in / Sign up

Export Citation Format

Share Document