Experimental Investigation on Microstructural and Wear Behaviour of Dual Reinforced Particles (DRP) Aluminium Alloy Composites

2020 ◽  
Vol 1159 ◽  
pp. 42-53
Author(s):  
Nю Nanda Kumar ◽  
Natarajan Muthukumaran

In the present scenario, the automobile industry, and aerospace industries are considerable scuffles to strive for innovative lightweight materials among manufacturing industries. They preserve their place by reducing the cost of their products and services. For this tenacity, the demand for lightweight material, low cost, and high-performance material are needed. Aluminum matrix composite is developed to fulfill and becomes an engineer’s material. Aerospace & Automobile industries are eager to introducing compound aluminum metal matrix composites due to their excellent mechanical & tribological properties which makes a reduction in the weight of the component. In this project the LM13 as the matrix material while SiC and B4C have been considered as dual reinforcement. Stir casting is the modest and inexpensive method of fabricating an aluminum matrix composite. For the Evaluation of Mechanical &Tribological behavior of DRP composite castings (LM13/B4C/SiC) selection for experimentation tests. In this paper different specimens of the MMC with LM13 Al Alloy 2wt% SiC and 2wt% B4C, 2wt% SiC and 4% B4C, 4wt% SiC, 2wt% B4C, 4wt% SiC and 4wt% B4C are taken for carried to invention out the increase in DRP in the composites will intensification the mechanical properties of the LM13 Al Alloy SiC and B4 C composite formed.

2020 ◽  
Vol 27 ◽  
pp. 62-68
Author(s):  
Hammar Ilham Akbar ◽  
Eko Surojo ◽  
Dody Ariawan ◽  
Galang Ariyanto Putra ◽  
Reyhan Tri Wibowo

2021 ◽  
Vol 18 (1) ◽  
pp. 97-101
Author(s):  
Shuib Pasha S A ◽  
Nayeem Ahmed M ◽  
Tilak S R ◽  
Anil Kumar B N

Composite materials are defined as material systems consisting of mixture of or combination of two or more micro constituents insoluble in each other and differing in form and or material composition. In this study Metal Matrix Composite (MMCs) has been produced using stir casting method for performing the mechanical properties. Most of the engineering industries want light and better mechanical properties of components; this can be achieved by MMCs of Aluminium because of its excellent performance. In this research work we fabricate the Aluminium by liquid route. Here Al 7075 is used as a base metal and Multi Walled Carbon Nanotubes (MWCNT) used as sub metal with various percentages. Experiments were conducted to analyze microstructure, hardness & tensile strength. By using optical microscope and Scanning Electron Microscope (SEM) we analyze the sample specimens are well dispersion in MWCNT with AA 7075. Hardness and tensile strength increases with increasing of wt. %. Hardness of material increases with increase in percentages of MWCNT, whereas tensile strength of the material increases with increase in percentages of MWCNT and Elongation reduces


Author(s):  
Hai Su ◽  
Wenli Gao ◽  
Hui Zhang ◽  
Hongbo Liu ◽  
Jian Lu ◽  
...  

The flow behavior of the fluid has a significant effect on the particle distribution in the solid-liquid mixing vessel. The stir casting process is generally conducted in a closed crucible, in which the flow pattern is invisible. Therefore, numerical simulation is a forceful tool to guide the experimental research. In the present study, the fluid flow in the stirred crucible during stir casting has been simulated using finite element method. The effects of some important stirring process parameters, such as the blade angle, rotating speed, the diameter of the impeller, and the stirrer geometry, on the flowing characteristics of the molten matrix have been investigated in order to achieve the effective flow pattern to uniformly disperse the ceramic particles in the molten matrix. The simulation results show that the process parameters have significant effects on the flow behavior of the fluid in the stirred crucible. The various combinations of these parameters are beneficial to generate a suitable condition for the composite casting. Further experimental investigation reveals that the present work can provide a guide for the industrial preparation of aluminum matrix composite with a uniform particle reinforcement distribution by stir casting process.


1993 ◽  
Vol 3 (7-8) ◽  
pp. 699-713 ◽  
Author(s):  
Glenn S. Daehn ◽  
Kavitha Hebbar ◽  
Yeong Sung Suh ◽  
Hongyan Zhang

2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Jun Dai ◽  
Banglong Yu ◽  
Wei Jiang ◽  
Hla Min Htun ◽  
Zheng Liu

In this paper, dissimilar metal joints of 6061 aluminum alloy and aluminum matrix composite material are investigated by laser welding. TiB2 particles were added into the lap joint. The welding process, microstructure, and the corrosion properties of welding joints are examined. The results demonstrate that the selected optimization process parameters are laser power 6 kW, welding speed 0.6 mm/s, pulse width 11.5 ms, and laser frequency 4.5 Hz. There are a few obvious pores in the molten pool. Al2Ti, Fe2Si, and Al0.5Fe3Si0.5 are present in the microstructure. During the welding process, some TiB2 particles are decomposed and reacted with molten Al. Other TiB2 particles are nucleated and solidified, and the excess TiB2 particles are pushed to the grain boundaries by molten Al. TiB2 particles are wetted well by molten matrix metal. The corrosion resistance of alloys in different conditions decreased in the following order: the weld beam >6061 Al > AMC.


2017 ◽  
Vol 29 (1) ◽  
pp. 35-39 ◽  
Author(s):  
Amir Arifin ◽  
◽  
Gunawan Gunawan ◽  
Irsyadi Yani ◽  
Muhammad Yanis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document