Influence of Nano Particles in the Flexural Behavior of High-Strength Reinforced Concrete Beams

2021 ◽  
Vol 1160 ◽  
pp. 25-43
Author(s):  
Naglaa Glal-Eldin Fahmy ◽  
Rasha El-Mashery ◽  
Rabiee Ali Sadeek ◽  
L.M. Abd El-Hafaz

High strength concrete (HSC) characterized by high compressive strength but lower ductility compared to normal strength concrete. This low ductility limits the benefit of using HSC in building safe structures. Nanomaterials have gained increased attention because of their improvement of mechanical properties of concrete. In this paper we present an experimental study of the flexural behavior of reinforced beams composed of high-strength concrete and nanomaterials. Eight simply supported rectangular beams were fabricated with identical geometries and reinforcements, and then tested under two third-point loads. The study investigated the concrete compressive strength (50 and 75 N/mm2) as a function of the type of nanomaterial (nanosilica, nanotitanium and nanosilica/nanotitanium hybrid) and the nanomaterial concentration (0%, 0.5% and 1.0%). The experimental results showed that nano particles can be very effective in improving compressive and tensile strength of HSC, nanotitanium is more effective than nanosilica in compressive strength. Also, binary usage of hybrid mixture (nanosilica + nanotitanium) had a remarkable improvement appearing in compressive and tensile strength than using the same percentage of single type of nanomaterials used separately. The reduction in flexural ductility due to the use of higher strength concrete can be compensated by adding nanomaterials. The percentage of concentration, concrete grade and the type of nanomaterials, could predominantly affect the flexural behavior of HSRC beams.

2010 ◽  
Vol 34-35 ◽  
pp. 1441-1444 ◽  
Author(s):  
Ju Zhang ◽  
Chang Wang Yan ◽  
Jin Qing Jia

This paper investigates the compressive strength and splitting tensile strength of ultra high strength concrete containing steel fiber. The steel fibers were added at the volume fractions of 0%, 0.5%, 0.75%, 1.0% and 1.5%. The compressive strength of the steel fiber reinforced ultra high strength concrete (SFRC) reached a maximum at 0.75% volume fraction, being a 15.5% improvement over the UHSC. The splitting tensile strength of the SFRC improved with increasing the volume fraction, achieving 91.9% improvements at 1.5% volume fraction. Strength models were established to predict the compressive and splitting tensile strengths of the SFRC. The models give predictions matching the measurements. Conclusions can be drawn that the marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) can be overcome by the addition of steel fibers.


2019 ◽  
Vol 8 (2) ◽  
pp. 5306-5310

Becoming modern waste have discovered the need to transfer of mechanical waste, The waste that must be arranged would two be able to be spared to use in some way, among the two modern waste preparing cementatious nature substances can be supplanted as folio include number in cement to separated. Ground Granulated Blast Furnaces Slag (GGBS) which used to be squander from an iron assembling industry, which used to be utilized as substitute of bond in cement because of its characteristic solidifying properties. To increase the strength of the concrete some of the special cements are used. Due to various codal specifications the binding material replacements of GGBS have been restricted up to 80% in maximum. In this project replacement of GGBS is done by an amount of 10% ,20% ,30% and 40%. In accordance with above restrictions the replacement variations in binding material have been decoded in a high strength concrete mixture. The research work have been extensively executed in almost all areas of testing like compressive strength , spilt tensile strength, and flexural strength, and also various primary tests like specific gravity , granular gradation etc. have also been excited to achieve high strength concrete.


2021 ◽  
Vol 45 (4) ◽  
pp. 351-359
Author(s):  
Noor Alhuda Sami Aljabbri ◽  
Mohammed Noori Hussein ◽  
Ali Abdulmohsin Khamees

Fire or high temperature is a serious issue to ultra-high-strength concrete (UHSC). Strength reduction of UHPCs may amount to as high as 80 percent after exposure to 800℃. A sum of four UHSC mixes was synthesized and evaluated in this study after getting exposed to extreme temperatures that reach 1000°C. Steel and polypropylene (PP) fibers were used in this experiment. A total of four mixes were made of UHSC without fibres as a control mix (UHSC-0), UHSC with 2% steel fibres (UHSC-S), UHSC with 2% PP fibres (UHSC-P) and UHSC with 1% steel fibres + 1% PP fibres (UHSC-SP). Workability, direct tensile strength, compressive strength, and splitting tensile strength were examined. Particularly, emphasis was devoted to explosive spalling since UHPCs are typically of compact structure and hence more prone to explosive spalling than other concretes. It was determined that the mixture UHSC-SP had high fire resistance. Following exposure to 1000℃, this mixture preserved a residual compressive strength of 36 MPa, splitting tensile strength of 1.62 MPa and direct tensile strength of 0.8 MPa. On the other hand, UHSC-P also had good fire resistance while UHSC-0 and UHSC-S experienced explosive spalling after heating above 200ᴼC. The incorporation of steel fibers in UHSC-S and UHSC-SP mixtures reveals higher tensile and compressive strength findings at different elevated temperatures as compared to UHSC-0 and UHSC-P. In addition, the result of direct tensile strength appears to be lower than splitting tensile strength at different raised temperatures.


2012 ◽  
Vol 174-177 ◽  
pp. 1388-1393
Author(s):  
Hai Qing Song ◽  
Teng Long Zheng

Plain concrete is susceptible to cracking under aggressive environment such as in freezing shaft. And addition of steel fibres in plain high strength concrete is proved to be effective in cracking resistance and brittleness improvement, etc. This paper presents results of experimental investigation carried out to study the mechanical properties of steel fibre-reinforced concrete having volume fractions of 0.38%, 0.51% and 0.64% for two types of fibres respectively. The results of this study revealed that there is an increase for all the mechanical properties such as compressive strength, split tensile strength, modulus of elasticity and flexural strength. Enhancement for split tensile strength and flexural strength is more evident than compressive strength.


2010 ◽  
Vol 150-151 ◽  
pp. 996-999
Author(s):  
Chang Wang Yan ◽  
Jin Qing Jia ◽  
Ju Zhang ◽  
Rui Jiang

The marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) with compressive strength of 100 MPa can be overcome by the addition of polyvinyl alcohol (PVA) fibers. The compressive strength and splitting tensile strength of ultra high strength concrete containing PVA fibers are investigated this paper. The PVA fibers were added at the volume fractions of 0%, 0.17%, 0.25%, 0.34% and 0.5%. The compressive strength of the PVA fiber reinforced ultra high strength concrete (PFRC) reached a maximum at 0.5% volume fraction, being an 8.2% improvement over the UHSC. The splitting tensile strength of the PFRC improved with increasing the volume fraction, achieving 46.7% improvements at 0.5% volume fraction. The splitting strength models were established to predict the compressive and splitting tensile strengths of the PFRC. The models give predictions matching the measurements.


Sign in / Sign up

Export Citation Format

Share Document