Fourier-Transform Infrared Spectroscopy and Thermal Investigation of Hybrid Banana/Sisal Fiber Reinforced Polyester Matrix Composite

2021 ◽  
Vol 1165 ◽  
pp. 39-46
Author(s):  
Ekene Gabriel Okafor ◽  
Mohammed Tahir Abba ◽  
Osichinaka Chiedu Ubadike ◽  
Stephen Agbo ◽  
Habeeb Mohammad Mohammed

The key focus of this work was to examine the effect of hybrid fiber reinforcement on thethermal properties of particulate based natural fiber-reinforced hybrid composites. Banana and sisal fiberswere selected as natural fiber reinforcements for the polyester matrix based composites, which wereproduced by mechanical stir mix technique. Thermo-Gravimetric Analysis (TGA) and Fourier-TransformInfrared Spectroscopy (FTIS) were conducted in accordance with American Society for Testing andMaterials (ASTM) standards for the characterization of the hybrid composites. The FTIS result shows thedisappearance of 1735 cm-1 peak, a notable evidence of NaOH treatment. The thermal analysis showedthat the hybridization significantly affected the high temperature stability of the composite, with 70%Sisal/30%Banana found to have the lowest high temperature mass loss at a temperature of 300–520oC, thushighest high temperature stability. Derivative Thermogravimetry (DTG) results shows a minor mass lossrate at a temperature range of 50–150oC as well as a major mass loss rate due to pyrolysis of key fiberconstituents such as cellulose, hemicellulose and lignin between 260 and 350oC. Also it was observed thatas the percentage of banana in the hybrid fiber increases the speed of high temperature mass loss reduces.

ICTE 2011 ◽  
2011 ◽  
Author(s):  
Rui Xiong ◽  
Shuanfa Chen ◽  
Bowen Guan ◽  
Peiliang Cong ◽  
Lili Ma

Author(s):  
Mohit Mittal ◽  
Rajiv Chaudhary

Recently, most of the industries are looking towards to incorporate sustainable, renewable, eco- friendly and affordable raw materials and production process. To achieve this goal, engineers and technologist are working on biocomposite material. The primary reason behind the selection of natural fiber based material in the automobile, construction, and aerospace industry is its low cost, lightweight, high specific strength and modulus, biodegradability, and friendly processing. Inspite of all beneficial features, one of the main barriers to their utilization in all mentioned sectors is thermal degradability. Natural fibers can be subjected to thermal degradation during composite processing and their application in the high-temperature field. So it is practically significant to understand the thermal decomposition of lignocellulosic fibers and to modify it for the purpose of high-temperature stability. In this work, alkaline treatment of varying concentrations (2%, 4%, 6%, 8%, and 10 wt %) was used to study the effect of alkaline treatment on thermal stability of pineapple leaf fibers. The thermal behavior of untreated and alkali treated pineapple leaf fiber was examined by using a thermal gravimetric analysis instrument (TGA). The results show that 4 wt% NaOH treated pineapple leaf fiber have maximum thermal stability. The decomposition of untreated and treated PALF was a two-stage process attributed to the thermal decomposition of hemicellulose, cellulose, and lignin. The results also showed that the temperature of initial degradation 251 0C increased to 285 0C after 4% alkaline treatment due to partial removal of hemicellulose and lignin.


Alloy Digest ◽  
1989 ◽  
Vol 38 (1) ◽  

Abstract UNS NO6455 is a nickel-chromium-molybdenum alloy with outstanding high-temperature stability as shown by high ductility and corrosion resistance even after long-time aging in the range 1200-1900 F. The alloy also has excellent resistance to stress-corrosion cracking and to oxidizing atmospheres up to 1900 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-367. Producer or source: Nickel and nickel alloy producers.


Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract UNS No. R54620 is an alpha-beta titanium alloy. It has an excellent combination of tensile strength, creep strength, toughness and high-temperature stability that makes it suitable for service to 1050 F. It is recommended for use where high strength is required. It has outstanding advantages for long-time use at temperatures to 800 F. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-86. Producer or source: Titanium alloy mills.


Sign in / Sign up

Export Citation Format

Share Document