Preparation and Properties of Thin Walled Copper Tube by a Short Process Method

2010 ◽  
Vol 148-149 ◽  
pp. 732-735
Author(s):  
Bao Long Yuan ◽  
Zi Dong Wang ◽  
Xiang Ming Li ◽  
Chun Jing Wu

Thin walled copper tube is prepared in vacuum melting and argon protecting continuous unidirectional solidification equipment by a short process method. The size of the thin walled copper tube is ф39×1.8 mm. The effect of process parameters on the solidification structure and the surface quality of the thin walled copper tube is investigated. The mechanical properties and electrical properties are tested and analyzed. The results show that the thin walled tube with columnar crystal structure and good quality surface can be obtained continuously and stably under the most appropriate process of the melting temperature is between 1423K and 1453K, the cooling water volume is 0.2~0.5m3•h-1, the cooling distance is 50mm, the drawing speed is not higher 20m•h-1. The elongation can reach 60%, and conductivity can reach 102.6%IACS.

2021 ◽  
Vol 72 ◽  
pp. 215-226
Author(s):  
Cheng Cheng ◽  
Hao Chen ◽  
Jiaxin Guo ◽  
Xunzhong Guo ◽  
Yuanji Shi

2017 ◽  
Vol 746 ◽  
pp. 16-21
Author(s):  
S.G. Simagina

Intensive development of Russian aviation and aerospace industries put an emphasis to the problem of quality of using materials and workpieces and to the value of technical and economical indexes in the context of planned production level [1, 2]. Waste-free technologies are preferred. Cutting by torsion or cutting by shear are preferable technologies if thin-walled tube cutting is the main blanking operation. Build-up of workpiece deformation zone plays an important role in the cutting process. Deformation zone determines stability of details during further processing and exploitation. An extended research was conducted about tube separation process using torsion with an active counterpressure. Some parameters was defined in the result of research, in particular: distribution of deformation zone along length and thickness of workpiece, angular deflection and compression force and workpiece heating temperature impact on build-up of whisker disposition in the cut zone. It allows identifying optimum compression force range and temperature conditions. Compliance with recommended practices allows conducting thin-walled tube separation simultaneously with build-up on the workpieces whisker structure that is fortunate for further pressure treatment and exploitation.


2006 ◽  
Vol 16 (4) ◽  
pp. 878-886 ◽  
Author(s):  
He YANG ◽  
Rui-jie GU ◽  
Mei ZHAN ◽  
Heng LI

2018 ◽  
Vol 780 ◽  
pp. 25-31 ◽  
Author(s):  
Faramarz Djavanroodi ◽  
Fahd Almufadi

— tailoring material properties to specific application requirements is one of the major challenges in materials engineering. Grain size is a key factor affecting physical and mechanical properties of polycrystals materials. Grain size reduction in the metals and alloys can be achieved using Equal channel angular pressing (ECAP) method. In this work, Nanostructure thin walled copper tube specimens with 1 mm wall thickness and 23mm diameter have been produced successfully with ECAP method using flexible polyurethane rubber pad to prevent the tube walls from collapsing. Furthermore, this paper details the development of a numerical simulation to analyse the fabrication of thin walled tube through ECAP process. A copper tube was pushed through a channel with a series of 90° bends. During each successive bend, the magnitude of plastic strains accumulate in the copper tube. A three dimensional numerical simulation was used to model the process and determine the extent of plastic deformation that takes place during each bend process. The numerical simulation was developed using the finite element (FE) code, ABAQUS V6.13, and analysed using the explicit solver.


Alloy Digest ◽  
1994 ◽  
Vol 43 (8) ◽  

Abstract NICROBRAZ 50 is a low-melting, free-flowing filter metal for honeycomb structures and thin-walled tube assemblies. It has low solubility. This datasheet provides information on composition, physical properties, and hardness. It also includes information on corrosion resistance as well as joining. Filing Code: Ni-460. Producer or source: Wall Colmonoy Corporation.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1221
Author(s):  
Lu Bai ◽  
Jun Liu ◽  
Ziang Wang ◽  
Shuanggui Zou

In the field of cold bending, it is necessary to use ball mandrels, especially to bend thin-walled tubes with a small radius. However, the bending process with a ball mandrel is complex and expensive, and it is easy to jam the core ball inside the tube. To solve these issues, we designed two kinds of hollow non-ball mandrel schemes with low stiffness that were suitable for the small radius bending of thin-walled tubes. We evaluated the forming quality of cold bending numerically and the influence of the hollow section length and thickness on the forming indices. Our results showed that the thickness of the hollow section has a greater influence on forming quality than the length. As the hollow section’s thickness increased, the wrinkling rate first declined by approximately 40% and then increased by above 50%. When the thickness was 11 mm in scheme 1 and 13 mm in scheme 2, the wrinkling rate reached minimum values of 1.32% and 1.50%, respectively. As the hollow section’s thickness increased, the flattening rate decreased by more than 60% and the thinning rate increased by about 40%. A multi-objective optimization of forming indices was carried out by ideal point method and grey wolf optimizer. By comparing the forming results before and after optimization, the feasibility of using the proposed hollow mandrel was proved, and the hollow mandrel scheme of standard cylinder is therefore recommended.


2021 ◽  
Vol 11 (5) ◽  
pp. 2142
Author(s):  
Trung-Kien Le ◽  
Tuan-Anh Bui

Motorbike shock absorbers made with a closed die employ a tube-forming process that is more sensitive than that of a solid billet, because the tube is usually too thin-walled to conserve material. During tube forming, defects such as folding and cracking occur due to unstable tube forming and abnormal material flow. It is therefore essential to understand the relationship between the appearance of defects and the number of forming steps to optimize technological parameters. Based on both finite element method (FEM) simulations and microstructural observations, we demonstrate the important role of the number and methodology of the forming steps on the material flow, defects, and metal fiber anisotropy of motorbike shock absorbers formed from a thin-walled tube. We find limits of the thickness and height ratios of the tube that must be held in order to avoid defects. Our study provides an important guide to workpiece and processing design that can improve the forming quality of products using tube forming.


2011 ◽  
Vol 223 ◽  
pp. 662-670 ◽  
Author(s):  
Hendrik Puls ◽  
Fritz Klocke ◽  
Dieter Lung ◽  
Ralf Schlosser ◽  
Peter Frank ◽  
...  

The presented work is a part of the EU integrated and collaborative project “Aligning, Holding and Fixing Flexible and Difficult to Handle Components” (AFFIX). The deformation of thin-walled components, caused by a thermo-mechanical load in the machining process, is a common challenge in manufacturing automotive engine heads and gearboxes. Geometrical tolerances like flatness are strongly affected by the thermo-mechanical process loads, and therefore cause production scraps and serious engine faults in case of undetected defects. To avoid long process setup times, a methodology has been developed to calculate the resulting part flatness. Based on the developed methodology a clamping strategy has been identified which minimises the resulting part deformation in milling operations and thus ensures the accuracy and quality of thin-walled aluminum power train parts.


Author(s):  
Weiye Zhang ◽  
Yanchen Li ◽  
Beibei Wang ◽  
Jingmeng Sun ◽  
Lin Lin ◽  
...  

A cellulose carbonaceous aerogel/MnO2 ultrathick electrode with a unique low curvature, porous carbon thin-walled tube array structure was obtained from natural wood using a simple top-down approach.


Sign in / Sign up

Export Citation Format

Share Document