Plasma Electrolytic Carbonitriding of 20CrMnTi Steel

2010 ◽  
Vol 154-155 ◽  
pp. 1393-1396 ◽  
Author(s):  
Xin Min Fan ◽  
Jie Wen Huang ◽  
Qun Yang ◽  
Jun Jie Gan

A carbontirided layer was produced on 20CrMnTi steel by plasma electrolytic carbonitriding (PEC/N). Scanning electron microscopy with an energy dispersive X-ray analysis was employed to study the morphology and chemical composition of the carbonitrided layer. Hardness of the layer was measured using a microhardness tester, and the phase structure was determined by X-ray diffraction. The results show that a compact carbonitrided layer can be obtained on the surface of 20CrMnTi steel. The thickness of the layer increases with carbontriding time. When the sample was treated at 120V for 20min, the thickness is 45μm and the highest microhardness is 766HV0.05. The carbontrided layers are composed of Fe3C, Fe5C2, ε-Fe3N and α-Fe.

1996 ◽  
Vol 11 (6) ◽  
pp. 1367-1372 ◽  
Author(s):  
J.C.L. Chow ◽  
P.C.W. Fung ◽  
H.M. Shao ◽  
C.C. Lam

Pb-substituted Hg-based superconductor of Hg0.66Pb0.33Ba2Ca2Cu3Oy has been fabricated using the sealed quartz tube technique. R- and x-ray diffraction pattern (XDP) measurements show that the specimen has a Tc of 135 K and contains mainly the Hg-1223 phase. Scanning electron microscopy/energy dispersive x-ray analysis (SEM/EDX) and transmission electron microscopy/energy dispersive x-ray analysis (TEM/EDX) were employed to study the texture and chemical composition of the specimen. It is found that the specimen contains round-shaped grains with a mixture of Hg-1223, BaCuO2, and Ca0.85CuO2 phases, square-shaped grains with a formula of PbBa2O3, small single crystals with single Hg-1223 phase, and crystal-like layers with a mixture of Hg-1223 and BaCuO2 phase. We consider that though the doping of Pb can benefit the stabilization of the Hg-1223 phase, it introduces other impurity phases and textures in the specimen at the same time.


2018 ◽  
Vol 21 (7) ◽  
pp. 495-500 ◽  
Author(s):  
Hassan A. Almarshad ◽  
Sayed M. Badawy ◽  
Abdalkarem F. Alsharari

Aim and Objective: Formation of the gallbladder stones is a common disease and a major health problem. The present study aimed to identify the structures of the most common types of gallbladder stones using X-ray spectroscopic techniques, which provide information about the process of stone formation. Material and Method: Phase and elemental compositions of pure cholesterol and mixed gallstones removed from gallbladders of patients were studied using energy-dispersive X-ray spectroscopy combined with scanning electron microscopy analysis and X-ray diffraction. Results: The crystal structures of gallstones which coincide with standard patterns were confirmed by X-ray diffraction. Plate-like cholesterol crystals with laminar shaped and thin layered structures were clearly observed for gallstone of pure cholesterol by scanning electron microscopy; it also revealed different morphologies from mixed cholesterol stones. Elemental analysis of pure cholesterol and mixed gallstones using energy-dispersive X-ray spectroscopy confirmed the different formation processes of the different types of gallstones. Conclusion: The method of fast and reliable X-ray spectroscopic techniques has numerous advantages over the traditional chemical analysis and other analytical techniques. The results also revealed that the X-ray spectroscopy technique is a promising technique that can aid in understanding the pathogenesis of gallstone disease.


2019 ◽  
Vol 29 (2) ◽  
Author(s):  
Mutia Dewi Yuniati ◽  
Feronika Cinthya Mawarni Putri Wawuru ◽  
Anggoro Tri Mursito ◽  
Iwan Setiawan ◽  
Lediyantje Lintjewas

Magnesite (MgCO3) is the main source for production of magnesium and its compound. In Indonesia, magnesite is quite rare and can be only found in limited amount in Padamarang Island, Southeast Sulawesi Provence. Thus the properties of magnesite and the reactivity degree of the obtained product are of technological importance. The aim of this work was to analyze the characteristics of Padamarang magnesite under calcination and hydrothermal treatment processes. The processes were carried out at various temperatures with range of 150-900°C for 30 minutes. The solids were characterized with respect to their chemical and physical properties by using scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). SEM image indicates that magnesite was formed from thin and flat hexagon sheets. The FTIR and XRD analysis disclose that MgO formed at temperature above 300°C, where as the magnesite sample also lost its mass around 50%. These results demonstrate that Padamarang magnesite decomposes to magnesium oxide and carbon dioxide at high temperature.Magnesit (MgCO3) merupakan sumber utama untuk produksi magnesium dan senyawa-senyawanya. Di Indonesia, magnesit cukup jarang dan hanya dapat ditemukan dalam jumlah yang terbatas di Pulau Padamarang, Propinsi Sulawesi Tenggara. Oleh karena itu sifat magnesit dan derajat reaktivitas dari produk-produk magnesit penting untuk diketahui. Penelitian ini bertujuan untuk menganalisis karakteristik magnesit Padamarang dengan perlakuan kalsinasi dan hidrothermal.  Proses dilakukan pada temperatur yang bervariasi dari 150-900°C selama 30 menit. Sifat kimia dan fisika dari magnesit dikarakterisasi dengan menggunakan scanning electron microscopy dengan energy-dispersive X-ray spectroscopy (SEM-EDX), Fourier-transform infrared spectroscopy (FTIR), dan X-ray diffraction (XRD). Gambar dari analisis SEM menunjukkan bahwa magnesit terbentuk dari lembaran-lembaran heksagonal yang tipis dan datar. Hasil analisis dengan FTIR dan XRD menunjukkan bahwa MgO terbentuk pada temperatur diatas 300°C, dimana sampel magnesit juga kehilangan massanya sekitar 50% pada suhu tersebut. Hal ini menunjukkan bahwa Magnesit Padamarang terdekomposisi menjadi magnesium oksida dan karbon dioksida pada temperatur tinggi.


2020 ◽  
Author(s):  
Ross Anderson ◽  
et al.

Supplemental methodological details, antibacterial properties of clays, other minerals with distinct fossil/matrix distributions, summaries of mineralogy by taxon, data tables, statistical summaries, and light/scanning electron microscopy–energy-dispersive X-ray spectroscopy images of fossil specimens showing X-ray diffraction selected areas.<br>


Metals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 723 ◽  
Author(s):  
Sónia Simões ◽  
Carlos Tavares ◽  
Aníbal Guedes

Joining γ-TiAl alloy to Ni-based superalloy Hastelloy using Ag-Cu sputtered coated Ti foil as brazing filler was investigated in this study. Brazing experiments were performed at 900, 950, and 980 °C with a dwelling stage of 10 min in vacuum. The microstructure and the chemical composition of the resulting interfaces were analyzed by scanning electron microscopy (SEM) and by energy dispersive X-ray spectroscopy (EDS), respectively. Sound joints were produced after brazing at 980 °C, presenting a multilayered interface, consisting mainly of Ti-Al and Ti-Ni-Al intermetallics close to the γ-TiAl alloy, and of Ti-rich, Ti-Ni, and Cr-Ni-Mo rich phases near Hastelloy. The hardness of the interface, ranging from around 300 to 1100 HV0.01, is higher than both base materials, but no segregation of either Ag solid solution or coarse intermetallic particles was observed. Therefore, the developed brazing filler also avoids the need to perform post-brazing heat treatments that aim to eliminate detrimental extensive segregation of either soft phases or of hard and brittle compounds.


2015 ◽  
Vol 41 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Mariana Lima da Costa Valente ◽  
Antonio Carlos Shimano ◽  
Elcio Marcantonio Junior ◽  
Andréa Candido dos Reis

The purpose of the study was to use scanning electron microscopy and energy dispersive x-ray spectrometry to assess possible morphologic and chemical changes after performing double-insertion and pullout tests of implants of different shapes and surface treatments. Four different types of implants were used—cylindrical machined-surface implants, cylindrical double-surface–treated porous implants, cylindrical surface-treated porous implants, and tapered surface-treated porous implants—representing a total of 32 screws. The implants were inserted into synthetic bone femurs, totaling 8 samples, before performing each insertion with standardized torque. After each pullout the implants were analyzed by scanning electron microscopy and energy dispersive x-ray spectrometry using a universal testing machine and magnified 35 times. No structural changes were detected on morphological surface characterization, only substrate accumulation. As for composition, there were concentration differences in the titanium, oxygen, and carbon elements. Implants with surface acid treatment undergo greater superficial changes in chemical composition than machined implants, that is, the greater the contact area of the implant with the substrate, the greater the oxide layer change. In addition, prior manipulation can alter the chemical composition of implants, typically to a greater degree in surface-treated implants.


Sign in / Sign up

Export Citation Format

Share Document