Synthesis and Characterization of the Ba5(PxAs1-xO4)3Cl Solid Solutions

2010 ◽  
Vol 156-157 ◽  
pp. 232-236
Author(s):  
Cai Chun Wei ◽  
Yan Pan ◽  
Yi Nian Zhu ◽  
Zong Lan Zhang ◽  
Hui Li Liu ◽  
...  

A series of arsenate substituted chlorapatite was directly prepared through aqueous precipitation method. Characterization studies from elemental analysis, XRD, FT-IR spectra and SEM confirmed the forming of the arsenate/phosphate chlorapatite solid solutions. The XRD analysis indicated the typical solid solution phase of the apatite-type structure. In FT-IR spectra, the area of the phosphate peak was gradually suppressed and the arsenate peak increased as the proportion of the arsenate increased. The solids with As/(As+P) molar ratio of 0.49~1.0 were needle-like crystals; those with As/(As+P) molar ratio <0.19 were large tabular.

2021 ◽  
Vol 3 (1) ◽  
pp. 8-11
Author(s):  
Yelmida Azis ◽  
Cory Dian Alfarisi ◽  
Komalasari Komalasari ◽  
Khairat Khairat ◽  
Yusnimar Sahan

Hydroxyapatite (HAp, Ca10(PO4)6(OH)2) is the most stable form of calcium phosphate and widely used in various medical applications, mainly in orthopedics and dentistry due to its close similarities with the inorganic mineral component of bone and teeth. This study aims to synthesize hydroxyapatite from duck eggshell using the precipitation method. The duck eggshell was calcined, hydrated (slaking) and underwent carbonation to form Precipitated Calcium Carbonate (PCC).  Afterwards, (NH4)2HPO4 was added to produce HAp by varying the molar ratio of Ca/P by 1.67, 1.77 and 1.87 and stirring speed by 200, 250, 300rpm under basic condition (pH 10 – 11). The best results were obtained at a molar ratio of 1.77 with 200rpm stirring speed. Furthermore, the X-ray Diffraction (XRD) analysis showed that its crystals were hexagonal with sizes of 23.062nm, in the absence of other crystalline phases. Therefore, the hydroxyapatite was obtained in the agglomerates form with a specific surface area of ??55.929m2/g.


2015 ◽  
pp. 124-129
Author(s):  
Pepi Helza Yanti ◽  
Akmal Mukhtar ◽  
. Astarina

Synthesis of Co3O4 has been done using Co(NH3)4.6H2O and KOH as precursors with molar ratio 1:1 M with precipitation method. Several of calcination temperature were done to learn type of mineral phase and crystalinity of Co3O4 synthesized. The XRD analysis revealed that calcination temperature influence crystalinity and mineral phase of Co3O4 prepared and calcination temperature at 700 oC has highest intensity and crystalinity that others. Analysis of particle size was examined using Schererr equation, and the results showed that particle size decrease with calcination temperature. The particle size at  700 oC was = 32.387 nm. Analysis morphology of Co3O4 was examined using SEM technique, and the result revelaed Co3O4 have nearly spherical.DOI :http://dx.doi.org/10.15408/jkv.v0i0.3176.


2018 ◽  
Vol 930 ◽  
pp. 48-52
Author(s):  
Eliana dos Santos Câmara-Pereira ◽  
Ana Emília Holanda Rolim ◽  
Isabela Cerqueira Barreto ◽  
Laise Monteiro Campos Moraes ◽  
Lilian Campos ◽  
...  

Some biomaterials can be used to promote tissue repair process. The biological substitutes (biomaterials such as hydroxyapatite beads) can be used with some advantages and purpose of mimicking responses to on-site repair of the injured bone. The objective of this study was to evaluate the osteogenic potential of the biomaterial composed of hydroxyapatite and alginate in place of the critical defect. bioceramic samples stoichiometric hydroxyapatite was produced by the precipitation method, wet method with ion molar ratio of Ca 10 (PO 4) 6 (OH) 2, in which the Ca / P ratio was equal to 1.67. The reaction conditions were favorable to the composition of a biomaterial with crystalline phase. The synthesis of the biomaterial composed of hydroxyapatite and alginate microspheres (HAAlg5%; 200 ø 425mm) was obtained from two primary solutions with the aim of, in optimal reactive conditions, to form the precipitate. After synthesis the microspheres were implanted into the defect site. The potential effects of using HAAlg5% and the application of vibratory waves in the critical defect repair were unknown and the results described in this study are promising, considering the systemic therapy and at the site of injury. The biomaterial used promoted repair the injured tissue.


2016 ◽  
Vol 13 (2) ◽  
pp. 244-252
Author(s):  
Baghdad Science Journal

In this paper, some chalcone derivatives (C1, C2) were synthesized based on the reaction of equal amount of substituted acetophenone and substituted banzaldehyde in basic medium. Oxazine and thiazine derivatives were prepared from the reaction of chalcones (C1-C2) with urea and thiourea respectively in a basic medium. Pyrazole derivatives were prepared based on the reaction of chalcones with hydrazine mono hydrate or phenyl hydrazine in the presence of glacial acetic acid as a catalyst. The new synthesized compounds were identified using various physical techniques like1 H-NMR and FT-IR spectra.


2014 ◽  
Vol 633-634 ◽  
pp. 30-33 ◽  
Author(s):  
Min Hu ◽  
Yu Hao Ma ◽  
Zong Jie Li ◽  
Wei Min Kang ◽  
Bo Wen Cheng

In this research, a kind of nonwoven composite used for the absorption of heavy mental ions has been made. The composite was made of two layers of ES thermal bonded nonwovens as the protective layers and the PAN-amidoxime nanofibers which are prepared through the modification of electrospun PAN nanofibers as the interlayer. The composition was achieved by the ultrasonic bonding method. After the composition the PAN nanofibers were modified by grafting the amidoxime group to PAN. The results of FT-IR spectra and FE-SEM indicated that nitrile groups in PAN were partly converted into amidoxime groups and there were no serious cracks on the surface of PAN-amidoxime nanofibers. The results show that the amidoxime groups have been proved to be grafted to the PAN nanofibers with the percent grafting of 81.6%.


2012 ◽  
Vol 581-582 ◽  
pp. 525-528
Author(s):  
Jia Feng Zhang ◽  
Bao Zhang ◽  
Xue Yi Guo ◽  
He Zhang Chen ◽  
Jian Long Wang ◽  
...  

The LiFe0.98Mn0.02PO4/C was synthesized by spray-drying and low temperature reduction route using FePO4•2H2O as precursor, which was prepared by a simple co-precipitation method. The LiFe0.98Mn0.02PO4/C sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical measurements. The XRD analysis and SEM images show that sample has the good ordered structure and spherical particle. The charge-discharge tests demonstrate that the powder has the better electrochemical properties, with an initial discharge capacity of 162.1 mAh•g−1 and 155.8 mAh•g−1 at current density of 0.1 C and 1C, respectively. The capacity retention reaches 99.4% after 100 cycles at 1C.


2016 ◽  
Vol 34 (2) ◽  
pp. 330-336 ◽  
Author(s):  
A.V. Ramya ◽  
Anu N. Mohan ◽  
B. Manoj

AbstractWrinkled graphene, derived from a facile thermal decomposition and chemical method, was subjected to various analysis techniques and the results have been reported here. Raman studies revealed the presence of highly graphitized amorphous carbon, which was evident by the appearance of five peaks in the deconvoluted first order spectrum. This result was very well corroborated by the XRD analysis. XPS and FT-IR spectra confirmed the incorporation of oxygen functionalities into the carbon backbone. AFM and SEM images of the sample disclosed a cluster of few-layer wrinkled graphene fragments. TEM images displayed a chain of nearly spherical aggregates of graphene, resembling nanohorns. The resistivity and sheet resistance of the sample were found to be low, making the obtained material a promising candidate for various device applications. Hence, kerosene soot proved to be an efficient precursor for facile synthesis of few layer graphene-like nanocarbon.


2012 ◽  
Vol 476-478 ◽  
pp. 1484-1487
Author(s):  
Zhi Hong Zhang ◽  
Feng Xue

The heteropoly salt, Na6[Mn(Mo11ZrO39)] •19H2O(MnZrMo)with Keggin structure of the 1:1:11series, was synthesized by the aqueous solution method, and characterized and analyzed. The element analysis showed that the molar ratio of Mn, Zr and Mo was accord with 1:1:11;the thermogravimetric analysis/ differential thermal analysis(TG/DTA) indicated that the MnZrMo had good thermal stability and it contained nineteen molecules of crystallization water; the characterization of the fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction analysis(XRD) and the ultraviolet spectrum(UV) showed that the anionic of the MnZrMo heteropoly salt possessed Keggin structure; the analysis of the scanning electron microscopy(SEM) showed that it had the basic feature of the macromolecular compound and a regular crystal. The MnZrMo heteropoly salt was used as the catalyst to degrade the acidic-green B(AGB) dyeing wastewater enhanced by the ultrasonic, the degradation rate could reach 95.90%.


2011 ◽  
Vol 66-68 ◽  
pp. 65-69
Author(s):  
Long Feng Li ◽  
Yuan Gao ◽  
Mao Lin Zhang

Ca-Mg-Al hydrotalcite-like compounds (CaMgAl-HTLcs) were synthesized by a hydrothermal method, and characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and differential thermal analysis (DTA) techniques. The effects of the medium pH value, the molar ratio of the raw materials, the reaction temperature and the reaction time on the structure of CaMgAl-HTLcs were studied. The results showed that increasing treatment temperature and reaction time could improve the crystallinity and monodispersity of hydrotalcite-like compound particles. And well-defined CaMgAl-HTLcs could be prepared at a pH value of 10~11 with n(Zn+Mg+Ca):n(Al) =2. The products synthesized were applied to PVC to improve the thermal stability of PVC.


Sign in / Sign up

Export Citation Format

Share Document