Energy Absorption Properties of Folded Honeycomb Structure Consisting of Corrugated Paperboard

2010 ◽  
Vol 160-162 ◽  
pp. 1488-1493
Author(s):  
Dong Mei Wang ◽  
Qiang Hua Liao ◽  
Zi You Bai

Many experiments and analysis of folded honeycomb consisting of corrugated paperboards show that the use of linerboard can increase the energy absorption and weight of folded honeycombs. However, it reduces the energy absorption per unit volume and unit mass and increases the cushioning cost either. For the same corrugate shape, reducing corrugated size will increase the weight of folded honeycombs, and changing corrugated size will change the energy absorption per unit volume, but it can not change the cushioning cost. At a low relative density of corrugated sandwiches, the energy absorption per unit volume and unit mass rapidly increases, and the cushioning cost decreases when the relative density of corrugated sandwiches rises. While at a higher relative density, the energy absorption per unit volume and unit mass does not effectively increase with relative density of corrugated sandwiches. However, the cushioning cost may increases. Therefore, when designing the corrugated sandwich size, we can change the thickness of corrugate basis-paper or the corrugated size to change the relative density of corrugated sandwiches and the cushioning cost.

Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2059
Author(s):  
Leilei Yan ◽  
Keyu Zhu ◽  
Yunwei Zhang ◽  
Chun Zhang ◽  
Xitao Zheng

Polylactic acid (PLA) hexagonal honeycomb structures were fabricated by using 3D-printing technology. By filling with absorbent polymethacrylimide (PMI) foam, a novel absorbent-foam-filled 3D-printed honeycomb was obtained. The in-plane (L- and W-direction) and out-of-plane (T-direction) compressive performances were studied experimentally and numerically. Due to absorbent PMI foam filling, the elastic modulus, compressive strength, energy absorption per unit volume, and energy absorption per unit mass of absorbent-foam-filled honeycomb under L-direction were increased by 296.34%, 168.75%, 505.57%, and 244.22%, respectively. Moreover, the elastic modulus, compressive strength, energy absorption per unit volume, and energy absorption per unit mass, under W-direction, also have increments of 211.65%, 179.85, 799.45%, and 413.02%, respectively. However, for out-of-plane compression, the compressive strength and energy absorption per unit volume were enhanced, but the density has also been increased; thus, it is not competitive in energy absorption per unit mass. Failure mechanism and dimension effects of absorbent-foam-filled honeycomb were also considered. The approach of absorbent foam filling made the 3D-printed honeycomb structure more competitive in electromagnetic wave stealth applications, while acting simultaneously as load-carrying structures.


2012 ◽  
Vol 134 (7) ◽  
Author(s):  
Jesse Schultz ◽  
David Griese ◽  
Jaehyung Ju ◽  
Prabhu Shankar ◽  
Joshua D. Summers ◽  
...  

This paper presents the energy absorption properties of hexagonal honeycomb structures of varying cellular geometries under high speed in-plane crushing. While the crushing responses in terms of energy absorption and densification strains have been extensively researched and reported, a gap is identified in the generalization of honeycombs with contr’olled and varying geometric parameters. This paper addresses this gap through a series of finite element (FE) simulations where the cell angle and the inclined wall thickness, are varied while maintaining a constant mass of the honeycomb structure. A randomly filled, nonrepeating design of experiments (DOEs) is generated to determine the effects of these geometric parameters on the output of energy absorbed and a statistical sensitivity analysis is used to determine the parameters significant for the crushing energy absorption of honeycombs. It is found that while an increase in the inclined wall thickness enhances the energy absorption of the structure, increases in either the cell angle or ratio of cell angle to inclined wall thickness have adverse effects on the output. Finally, the optimization results suggest that a cellular geometry with a positive cell angle and a high inclined wall thickness provides for maximum energy absorption, which is verified with a 6% error when compared to a FE simulation.


2017 ◽  
Vol 12 (4) ◽  
pp. 155892501701200
Author(s):  
Piotr Szurgott ◽  
Marian Klasztorny ◽  
Tadeusz Niezgoda ◽  
Danuta Miedzinska ◽  
Roman Gieleta

Experimental dynamic tests for energy absorption by four selected auxetic fabrics were conducted and analyzed. An original test stand was designed, manufactured and attached to a Hopkinson's bar. The energy absorbed by an auxetic curtain was expressed in terms of the energy of the maximum elastic deformation of a unit volume along the support line of the witness-plate. A quasi-impulse load was induced using a gas blast under a pressure corresponding to an indoors deflagration explosion of a propane-air mixture in a vented room. The auxetic fabric with the best energy-absorption properties was identified on the basis of the comparative analysis using a reference system with a steel specimen.


Author(s):  
Jesse Schultz ◽  
David Griese ◽  
Prabhu Shankar ◽  
Joshua D. Summers ◽  
Jaehyung Ju ◽  
...  

This paper presents the energy absorption properties of hexagonal honeycomb structures of varying cellular geometries to high speed in-plane impact. While the impact responses in terms of energy absorption and densification strains have been extensively researched and reported, a gap is identified in the generalization of honeycombs with controlled and varying geometric parameters. This paper attempts to address this gap through a series of finite element (FE) simulations where cell angle and angled wall thickness are varied while maintaining a constant mass of the honeycomb structure. A randomly filled, non-repeating Design of Experiments (DOE) is generated to determine the effects of these geometric parameters on the output of energy absorbed, and a statistical sensitivity analysis is used to determine the parameters significant for optimization. A high degree of variation in the impact response of varying cellular geometries has shown the potential for the forward design into lightweight crushing regions in many applications, particularly the automotive and aerospace industries. It is found that while an increase in angled wall thickness enhances the energy absorption of the structure, increases in either the cell angle or ratio of cell angle to angled wall thickness have adverse effects on the output. Finally, optimization results present that a slightly auxetic cellular geometry with maximum angled wall thickness provides for maximum energy absorption, which is verified with an 8% error when compared to a final FE simulation.


2021 ◽  
Vol 11 (12) ◽  
pp. 5445
Author(s):  
Shengyong Gan ◽  
Xingbo Fang ◽  
Xiaohui Wei

The aim of this paper is to obtain the strut friction–touchdown performance relation for designing the parameters involving the strut friction of the landing gear in a light aircraft. The numerical model of the landing gear is validated by drop test of single half-axle landing gear, which is used to obtain the energy absorption properties of strut friction in the landing process. Parametric studies are conducted using the response surface method. Based on the design of the experiment results and response surface functions, the sensitivity analysis of the design variables is implemented. Furthermore, a multi-objective optimization is carried out for good touchdown performance. The results show that the proportion of energy absorption of friction load accounts for more than 35% of the total landing impact energy. The response surface model characterizes well for the landing response, with a minimum fitting accuracy of 99.52%. The most sensitive variables for the four landing responses are the lower bearing width and the wheel moment of inertia. Moreover, the max overloading of sprung mass in LC-1 decreases by 4.84% after design optimization, which illustrates that the method of analysis and optimization on the strut friction of landing gear is efficient for improving the aircraft touchdown performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xiaoqin Hao ◽  
Jia Yu ◽  
Weidong He ◽  
Yi Jiang

To solve the problem of the effective cushioning of fast-moving mechanical components in small ring-shaped spaces, the factors affecting the compression and energy absorption properties of small-sized hollow metal tubes were studied. Simulation models were constructed to analyse the influences of tube diameter, wall thickness, relative position, and number of stacked components on the compression and energy absorption properties. The correctness of the simulation method and its output were verified by experiments, which proved the effectiveness of compression and energy absorption properties of small-sized thin-walled metal tubes. The research provides support for the application of metal tube buffers in armament launch technology and engineering practice.


2003 ◽  
Author(s):  
Atsushi Yokoyama ◽  
Tamotsu Nakatani ◽  
Motoharu Tateishi ◽  
Akihiko Gotoh

2021 ◽  
Vol 15 (2) ◽  
pp. 8169-8177
Author(s):  
Berkay Ergene ◽  
İsmet ŞEKEROĞLU ◽  
Çağın Bolat ◽  
Bekir Yalçın

In recent years, cellular structures have attracted great deal of attention of many researchers due to their unique properties like exhibiting high strength at low density and great energy absorption. Also, the applications of cellular structures (or lattice structures) such as wing airfoil, tire, fiber and implant, are mainly used in aerospace, automotive, textile and biomedical industries respectively. In this investigation, the idea of using cellular structures in pipes made of acrylonitrile butadiene styrene (ABS) material was focused on and four different pipe types were designed as honeycomb structure model, straight rib pattern model, hybrid version of the first two models and fully solid model. Subsequently, these models were 3D printed by using FDM method and these lightweight pipes were subjected to compression tests in order to obtain stress-strain curves of these structures. Mechanical properties of lightweight pipes like elasticity modulus, specific modulus, compressive strength, specific compressive strength, absorbed energy and specific absorbed energy were calculated and compared to each other. Moreover, deformation modes were recorded during all compression tests and reported as well. The results showed that pipe models including lattice wall thickness could be preferred for the applications which don’t require too high compressive strength and their specific energy absorption values were notably capable to compete with fully solid pipe structures. In particular, rib shape lattice structure had the highest elongation while the fully solid one possessed worst ductility. Lastly, it is pointed out that 3D printing method provides a great opportunity to have a foresight about production of uncommon parts by prototyping.


2010 ◽  
Vol 2010 (0) ◽  
pp. 477-479
Author(s):  
Tsutomu UMEDA ◽  
Koji MIMURA ◽  
Kei MAEKAWA

Sign in / Sign up

Export Citation Format

Share Document