Process Characteristics Study of Anaerobic Baffled Reactor (ABR)

2010 ◽  
Vol 160-162 ◽  
pp. 1551-1557
Author(s):  
Lu Ning ◽  
Jin Liu

In this paper, Anaerobic Baffled Reactor (ABR) was applied to treat the synthetic wastewater in the matrix of starch and glucose. the reactor was started using low loading start-up , VLR controlled at 0.59~11.05kgCOD/m3•d, there are some granular sludge appeared after running 18 days. The figure and size of granular sludge in each compartment revealed different characteristics due to the changing of OLRs and shear force between gas and liquid in each compartment. The COD removal efficiency was higher than 90% and steady when the reactor’s start-up finished.When the anaerobic granular sludge appeared in the reactor, the VLR was 1.29kgCOD/(m3•d)、COD removal efficiency was 83%、hydraulic surface loading was 0.078m3/m2.h and an HRT was 30h. The VLR had remarkable influence on COD removal efficiency、VFA、pH and ALK. When VLR was 5.57kgCOD/(m3•d), COD removal efficiency and ALK were the minimum, VFA in the outflow exceeded 1000mg/L, reactor’s efficiency decreased .The reactor recovered after adjusting VLR and ALK value. Compared with the third and fourth compartments, the first and second compartments were less sensitive to changing of VFA. When pH deviated from adapt range, the COD removal efficiency was decreased obviously, so pH value was kept in the range of 6.2 to 6.5 for the later stage of experiments.

2020 ◽  
Vol 9 (1) ◽  
pp. 32-51
Author(s):  
Revanuru Subramanyam

This research article describes start-up performance of an UASB (Upflow Anaerobic Sludge Blanket) reactor in terms of chemical oxygen demand (COD) removal efficiency, biogas production, sludge loading rate (SLR), volatile fatty acids (VFA), pH, alkalinity, total solids (TS) and volatile suspended solids (VSS), fed with synthetic wastewater with increased concentrations of glucose. The reactor was loaded up to an OLR (Organic Loading Rate) of 15 kg COD m-3 d-1 and achieved a COD removal efficiency of 82 ±3%. The results showed that digested seed sludge was successfully acclimatized and transformed finally into granular sludge within a period of 120 days. An increase in the accumulation of VFA at high OLRs showed that methanogenesis could be the rate-limiting step in the reactor operation. The SLR and VSS/TS ratio were increased with an increase in OLR. During the initial stages, uniform distribution of VSS concentration and later on maximum VSS concentration were found at port number two at a height of 350 mm. The carbon balance depicts that the maximum percentage of influent COD converted to methane COD. An increase in specific methanogenic activity values with the age of sludge confirmed the transformation of the seed sludge in to a granular sludge.


2008 ◽  
Vol 57 (6) ◽  
pp. 869-873 ◽  
Author(s):  
W. Yoochatchaval ◽  
K. Nishiyama ◽  
M. Okawara ◽  
A. Ohashi ◽  
H. Harada ◽  
...  

A 2.0 L volume of EGSB reactor was operated at 20°C for more than 500 days with 0.3–0.4 g COD/L of sucrose base wastewater to investigate the influence of effluent-recirculation on the process performance. At the start up period, the reactor was operated in EGSB mode with 5 m/h upflow velocity by continuous effluent recirculation. The COD loading was set to 7.2–9.6 kg COD/m3 day with HRT of 1 hour. However, in this mode, EGSB reactor exhibited insufficient COD removal efficiency, i.e., 50–60%. Therefore, UASB mode (without recirculation, 0.7 m/h upflow velocity) was used for 30 minutes in every 40 minutes cycle to increase the COD concentration in the sludge bed. As a result, an excellent process performance was shown. The COD removal efficiency increased from 65% to 91% and the reactor could maintain a good physical property of retained sludge (sludge concentration: 33.4 g VSS/L and SVI: 25 mL/g VSS). Furthermore, retained sludge possessed sufficient level of methanogenic activity at 20°C.


2005 ◽  
Vol 52 (1-2) ◽  
pp. 391-396 ◽  
Author(s):  
F.J. Almendariz ◽  
M. Meraz ◽  
A.D. Olmos ◽  
O. Monroy

Refinery spent caustics (SC) were diluted with sour waters (SW) in a ratio 1:7, neutralized with CO2 (SC/SWCO2) and 83% of H2S was striped during this procedure, remaining an aromatic portion that contained 2123, 2730 and 1379 mg L−1 of phenol, p-cresol and o-cresol, respectively. The mixture was treated anaerobically in an EGSB reactor fed with 1.5 gCOD L−1 d−1, without mineral supplements causing loss of COD removal efficiency that dropped to 23%, methane production ceased and no phenol or cresols were biodegraded. The EGSB experiments were resumed by feeding the reactor with nutrients and phenol at 1.0 gCOD L−1 d−1. The mixture SC/SWCO2 added to the phenol load, was step increased from 0.10 to 0.87 gCOD L−1 d−1 maximum. When total organic load was increased to 1.6, COD removal efficiency was 90% and at the highest load attained, 1.87, efficiency dropped to 23% attributed to the toxic effect produced by cresols.


2015 ◽  
Vol 72 (9) ◽  
pp. 1653-1661 ◽  
Author(s):  
YangWei Yan ◽  
YuWen Wang ◽  
Yan Liu ◽  
Xiang Liu ◽  
ChenChao Yao ◽  
...  

The effects of synthetic wastewater that contained 20 mg/L Cu(II) on the removal of organic pollutants in a sequencing batch reactor were investigated. Results of continuous 20 mg/L Cu(II) exposure for 120 days demonstrated that the chemical oxygen demand (COD) removal efficiency decreased to 42% initially, followed by a subsequent gradual recovery, which peaked at 78% by day 97. Effluent volatile fatty acid (VFA) concentration contributed 67 to 89% of the influent COD in the experimental reactor, which indicated that the degradation of the organic substances ceased at the VFA production step. Meanwhile, the varieties of soluble microbial products (SMP) content and main components (protein, polysaccharide, and DNA) were discussed to reveal the response of activated sludge to the toxicity of 20 mg/L Cu(II). The determination of Cu(II) concentrations in extracellular polymeric substances (EPS) and SMP throughout the experiment indicated an inverse relationship between extracellular Cu(II) concentration and COD removal efficiency.


2013 ◽  
Vol 303-306 ◽  
pp. 2616-2619
Author(s):  
Xiao Yan Sun ◽  
Pei Dao Pan ◽  
Jang Jie Wang

This mechanical processing waste emulsion for the study, handled by pulse electrolysis. Arrangements by orthogonal testing, experimental study on plate distance (d), current density (i), the pH value and the pulse width (tP) impact on COD removal efficiency, very poor analysis of test data to determine various factors affecting the COD removal efficiency of primary and secondary sort: pH value > current density > pulse width > plate distance, optimal operating conditions. Orthogonal experimental data derived from regression analysis, determination of cross of quadratic polynomial regression equations, mathematical model. Tests confirmed that pulse electrochemical method for treatment of waste emulsion with low energy consumption, short response time, and other advantages, strong applicability of wastewater, building mathematical models, providing theoretical basis for subsequent design.


2013 ◽  
Vol 726-731 ◽  
pp. 2813-2817
Author(s):  
Guang Li ◽  
Jing Li ◽  
Ke Sun

The interior diversion expanded granular sludge bed was concurrently operated for 140d to study the characteristic of the granular sludge bed. The influent COD concentration varied from 2000mg/L to 22300 mg/L, hydraulic retention time was maintained constant at 24 h and the organic loading rate was changed through a change in substrate concentration. The results showed that the reactor had great COD removal efficiency. When the MLSS was 23.1g/L, the influent COD was 18890mg/L, the COD removal efficiency was 80.4%; The interior diversion EGSB could greatly improve the role of gas-dynamic, when the liquid upflow velocity was 3.55m/h, the gas production was 5.96 L/d shows higher sludge bed expansion rate than 2.77 L/d about 9.5%. During the experimental, the anaerobic sludge has the following properties: the average sludge diameter was increased from 0.41mm to 1.66mm. Observed under the scanning electronic microscopy, we found that the sludge appeared obviously granulation, the bacteria amount and species are more than seed sludge after operation of 50d. It was found that rough surface of anaerobic sludge has clear figure with being covered by mucous lamina, with visible hole or cavity on surface.


1989 ◽  
Vol 21 (12) ◽  
pp. 1681-1684 ◽  
Author(s):  
I. Ozturk ◽  
G. K. Anderson ◽  
C. B. Saw

This paper presents the results of a pilot plant study using an Anaerobic Fluidized Bed Reactor (AFBR) for treatment of brewery wastes. A COD removal efficiency of greater than 75% was observed at an organic loading rate (OLR) of 9.5 kg COD/m3-day for a Deriod of 82 days from start-up. COD removal efficiency was greater than 74% at an OLR of 14.6 kg COD/m3 expanded bed (e.b)-day. A COD to methane conversion of 87% was achieved. Experimental results have suggested that the COD removal efficiency of an AFBR is only a function of COD loading, and neither the feed COD nor HRT alone significantly affect the performance of the reactor. A linear relationship was found between the specific substrate utilization rate and the specific methane production rate. It was observed that the distribution of the biomass along the height of the reactor is not uniform, and the biomass hold-up near the top of the reactor may reach concentrations of greater than 20,000 mg/l.


2010 ◽  
Vol 160-162 ◽  
pp. 1440-1444
Author(s):  
Dou Li ◽  
Dong Wei Li

The cyclohexanone production wastewater includes hazardous material such as cyclohexanone and cyclohexane which can harm the vessel of human body resulting in coagulation necrosis of viscera and brain. Our experiment choosed the cyclohexanone production wastewater to be investigated, and used the self-made anaerobic upflow bed filter (UBF) to deal with it. We try to find the optimal operational parameters which can make the degradation of hazardous materials maximizing. The COD removal efficiency was decreasing with the COD of influent’s increasing in starting stage, the shock load made the microbe in UBF can’t adapt the high VLR temporarily. In the running stage, the anaerobic sludge in UBF was incompact and the settleability of sludge was not very well. As the UBF running, the granular sludge shaped up greatly, the COD removal efficiency kept on 80%. The result showed that the UBF reactor was valid for hazardous material in cyclohexanone production wastewater.


2017 ◽  
Vol 43 (3) ◽  
pp. 24-31 ◽  
Author(s):  
Jan Paweł Bogacki ◽  
Hussein Al-Hazmi

AbstractAdvanced automotive fleet repair facility wastewater treatment was investigated with Zero-Valent Iron/Hydrogen Peroxide (Air/ZVI/H2O2) process for different process parameters: ZVI and H2O2doses, time, pH. The highest Chemical Oxygen Demand (COD) removal efficiency, 76%, was achieved for ZVI/H2O2doses 4000/1900 mg/L, 120 min process time, pH 3.0. COD decreased from 933 to 227 mg/L. In optimal process conditions odor and color were also completely removed. COD removal efficiency was increasing with ZVI dose. Change pH value below and over 3.0 causes a rapid decrease in the treatment effectiveness. The Air/ZVI/H2O2process kinetics can be described as d[COD]/dt = −a [COD]tm, where ‘t’ corresponds with time and ‘a’ and ‘m’ are constants that depend on the initial reagent concentrations. H2O2influence on process effect was assessed. COD removal could be up to 40% (560 mg/L) for Air/ZVI process. The FeCl3coagulation effect was also evaluated. The best coagulation results were obtained for 700 mg/L Fe3+dose, that was slightly higher than dissolved Fe used in ZVI/H2O2process. COD was decreased to 509 mg/L.


2013 ◽  
Vol 295-298 ◽  
pp. 1307-1310
Author(s):  
Xi Tian ◽  
Ming Xin Huo ◽  
De Jun Bian ◽  
Sheng Shu Ai ◽  
Qing Kai Ren

The wastewater produced from the polytetrahydrofuran (PolyTHF) was treated with iron-carbon micro electrolysis process. This paper had studied the COD removal efficiency influences of primary PH value, reaction time, the quality ratio of the iron-carbon, the quality and volume ratio of Fe-wastewater. The results show that when pH value is 3, the quality ratio of the iron-carbon is 11 and the quality and volume ratio of Fe and wastewater is 17 with contact time of 90 min, the wastewater COD removal rate can reach as high as 95.0%.


Sign in / Sign up

Export Citation Format

Share Document