Research on Hysteretic Behavior of the Concrete Filled Square CFRP-Steel Tubular (S-CFRP-CFST) Beam-Columns (I): Experimental Study

2010 ◽  
Vol 163-167 ◽  
pp. 3580-3585
Author(s):  
Yuan Che ◽  
Qing Li Wang ◽  
Yong Bo Shao ◽  
Hai Tao Mu

Overall 12 specimens were experimentally investigated in this paper to study the hysteretic behaviors of the concrete-filled square CFRP-steel tubular (S-CFRP-CFST) beam-columns. The test results indicated that CFRP can provide transverse confinement effect and longitudinal strengthening effect for the concrete filled square steel tubular (S-CFST) beam-columns effectively and the local buckling of the steel tube is deferred. The hysteretic load-deflection curves and the hysteretic moment-curvature curves at the mid-span of all the specimens are generally plump, and it shows these specimens have good hysteretic performance. In the later loading period, the load bearing capacity drops.

2011 ◽  
Vol 243-249 ◽  
pp. 5512-5516
Author(s):  
Qing Li Wang ◽  
Yuan Che ◽  
Yong Bo Shao ◽  
Jun Wu

Overall 12 specimens were experimentally investigated in this paper to study the hysteretic behaviors of the concrete-filled circular CFRP-steel tubular (C-CFRP-CFST) beam-columns. The test results indicated that CFRP can provide transverse confinement effect and longitudinal strengthening effect for the concrete filled circular steel tubular (C-CFST) beam-columns effectively and the local buckling of the steel tube is deferred. With the increase of the strengthening factor of the longitudinal CFRP, the damage scale reduces.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yiyan Lu ◽  
Tao Zhu ◽  
Shan Li ◽  
Weijie Li ◽  
Na Li

This paper investigates the axial behavior of slender reinforced concrete (RC) columns strengthened with concrete filled steel tube (CFST) jacketing technique. It is realized by pouring self-compacting concrete (SCC) into the gap between inner original slender RC columns and outer steel tubes. Nine specimens were prepared and tested to failure under axial compression: a control specimen without strengthening and eight specimens with heights ranging between 1240 and 2140 mm strengthened with CFST jacketing. Experimental variables included four different length-to-diameter (L/D) ratios, three different diameter-to-thickness (D/t) ratios, and three different SCC strengths. The experimental results showed that the outer steel tube provided confinement to the SCC and original slender RC columns and thus effectively improved the behavior of slender RC columns. The failure mode of slender RC columns was changed from brittle failure (concrete peel-off) into ductile failure (global bending) after strengthening. And, the load-bearing capacity, material utilization, and ductility of slender RC columns were significantly enhanced. The strengthening effect of CFST jacketing decreased with the increase of L/D ratio and D/t ratio but showed little variation with higher SCC strength. An existing expression of load-bearing capacity for traditional CFST columns was extended to propose a formula for the load-bearing capacity of CFST jacketed columns, and the predictions showed good agreement with the experimental results.


2010 ◽  
Vol 163-167 ◽  
pp. 749-753
Author(s):  
Yao Ji ◽  
Xin Tang Wang ◽  
Ming Zhou ◽  
Wan Zhen Wang

In order to look into the causes of fire response and post-fire bearing capacity of the steel tubular columns protected with different materials, the fire test was conducted for a set of circular steel tubes protected with different materials such as gypsum fireproof panel, bamboo plywood and the ordinary lumber core plywood, and the steel tube without any protective material. The fire response temperature of surface of steel tubes is measured and the axial compressive bearing capacity of the specimens after fire are tested and analyzed. The test results show that gypsum fireproof panel has the best fire protection characteristics, the ordinary lumber core plywood and bamboo plywood can also retard rising of the surface temperature of the steel tubes during the initial 35min although they are combustible materials. It is found that the post-fire bearing capacity of the steel tubes protected with different materials varies evidently, and the maximum value of response temperature has the greatest effect.


2011 ◽  
Vol 243-249 ◽  
pp. 1450-1455 ◽  
Author(s):  
Wan Lin Cao ◽  
Wen Jiang Zhang ◽  
Jian Wei Zhang ◽  
Hong Ying Dong

In view of the proposal of embedded steel plate concrete shear wall with concrete filled steel tube columns which contains a new kind shear connector of tie-bars through the circular holes linking concrete layers on both sides of the plate. In order to prove the seismic performance of walls with circular holes on the plate, three steel plate shear wall specimens, including the plate without holes bolted with columns, welded with columns, and the perforated plate welded with columns, were tested under cyclic loading. According to the results, the load-bearing capacity, ductility, energy dissipation, hysteretic behavior and failure phenomena were analyzed. It is showed that the load-bearing capacity of the three specimens were quite close. However, the wall with perforated steel plate has better ductility, energy dissipation and hysteretic behavior. So, it is an effective way to improve the seismic performance of walls by means of embedded perforated steel plate instead of ordinary ones.


2011 ◽  
Vol 415-417 ◽  
pp. 1421-1426
Author(s):  
Xu Hong Zhang ◽  
Quan Quan Guo

The improvement effect of the external concrete to stability of the core steel-tube was demonstrated by the steel-tube replacement ratio through experimental study. The test results show that, with the steel-tube replacement ratio increasing, the ultimate bearing capacity of composite columns increased correspondingly, and the ductility of composite columns was improved obviously also. Therefore, the steel-tube replacement ratio should be involved in the formula for calculating the ultimate bearing capacity of composite columns. By finite element method and regression analysis, the slenderness ratio is amended by the steel-tube replacement ratio and the calculation results of the eccentric compression bearing capacity agreed well with the test results.


2019 ◽  
Vol 9 (10) ◽  
pp. 1981 ◽  
Author(s):  
Jongho Park ◽  
Sungnam Hong ◽  
Sun-Kyu Park

In this study, to compare strengthening efficiency and flexural behaviors of textile- reinforced mortar (TRM) according to various types of strengthening methods without the textile being impregnated, ten specimens were tested. The results showed that TRM was beneficial for uniform distribution of cracks and increased the strengthening efficiency and load-bearing capacity, as textile reinforcement ratio and textile lamination increased and the mesh size of the textile decreased and mechanical end anchorage applied. However, the strengthening effect was shown obviously until the yield load considering structural safety and serviceability.


2013 ◽  
Vol 405-408 ◽  
pp. 1041-1045 ◽  
Author(s):  
Lian Qiong Zheng ◽  
Shu Li Guo ◽  
Ji Zhong Zhou

A simplified method using an equivalent slenderness ratio was suggested to calculate load-bearing capacity of concrete-filled steel tubular laced column in this paper. The significant differences between compressive and tensile strengths of concrete-filled steel tube were considered. The comparisons between the predicted Nuc and the tested Nue showed that the predicted method gives generally good predictions of the test results.


2020 ◽  
pp. 136943322097478
Author(s):  
Song Li ◽  
Chu-Jie Jiao

Reactive powder concrete-filled steel tubes (RPCFSTs) have become an important research target in recent years. In engineering applications, RPCFSTs can provide superior vertical components for high-rise and tower buildings, thereby enabling developers to provide more floor space. However, this type of composite structure is prone to inelastic outward local buckling. The use of carbon fiber reinforced polymer (CFRP) wrapping to suppress such local buckling has shown great potential in limited test results. This paper presents experimental results concerning the axial compression of CFRP-confined reactive powder concrete-filled circular steel tubes (CF-RPCFSTs). We included 18 specimens in our experimental investigation, varying the number of CFRP layers, steel tube thickness, and RPC strength. According to our test results, CF-RPCFSTs exhibit compression shear failure and drum-shaped failure. The CFRP wrap can effectively enhance bearing capacity and postpone local buckling of the steel tube. In addition, three-layer CFRP-confined RPC-filled thin-wall steel tubes are suitable for engineering. We also propose a model to calculate the bearing capacity of CF-RPCFSTs. Compared to the existing model of CFRP-confined concrete-filled steel tubes, the results obtained using the proposed model are in good agreement with our experimental results.


2011 ◽  
Vol 243-249 ◽  
pp. 1409-1415 ◽  
Author(s):  
Long Min Jiang ◽  
Fan Hua Tang ◽  
Man Li Ou

Eleven approximate full-size specimens including nine eccentrically compressed columns of monotonic loading and two axially compressed columns of laterally cyclic loading were tested. By a series of comparison experiment of specimens strengthened by high performance ferrocement laminates (HPFL) and no strengthened specimens, it was found that the RC columns strengthened with attached HPFL demonstrated greater degree of improving in load-bearing capacity, in which the carrying capacity increment of the strengthened eccentrically compressed columns with lesser eccentricity was greater than that of the same type of columns with bigger eccentricity under the same strengthening conditions; the strengthening effects of the specimens with lower concrete grade are better than that of those ones with higher concrete grade; the ductility and energy dissipation ability of the strengthened columns were remarkably increased. In this paper, the test results is described, the principle and regularity that this category of strengthening laminate improved the ultimate load-bearing capacity, ductility, cracking behavior and mode of failure etc. of the RC columns are analyzed. The studying results proved that this strengthening measure for RC columns is superior to make the strengthening effect notable, working behavior of strengthened column excellent, strengthening construction easy and economical.


2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Ulf Arne Girhammar ◽  
Bo Källsner

The authors present an experimental and analytical study of slotted-in connections for joining walls in the Masonite flexible building (MFB) system. These connections are used for splicing wall elements and for tying down uplifting forces and resisting horizontal shear forces in stabilizing walls. The connection plates are inserted in a perimeter slot in the PlyBoard™ panel (a composite laminated wood panel) and fixed mechanically with screw fasteners. The load-bearing capacity of the slotted-in connection is determined experimentally and derived analytically for different failure modes. The test results show ductile postpeak load-slip characteristics, indicating that a plastic design method can be applied to calculate the horizontal load-bearing capacity of this type of shear walls.


Sign in / Sign up

Export Citation Format

Share Document