Experimental Study on Anti-Seismic Restoration of Rowlock Walls

2010 ◽  
Vol 163-167 ◽  
pp. 3787-3793
Author(s):  
Wei Min Tang ◽  
Xiao Bing Li ◽  
Lin Zhu Sun ◽  
Guo Ping Jin ◽  
Zhao Hui Li ◽  
...  

Based on pseudo-static test of rowlock wall with different constructional measures by MTS loading system, the position of initial crack, distribution of crack, cracking load, failure load, failure state are studied, in order to provide test basis for the determination of economical and effective construction measures for rowlock wall. The test results show that the cracking load and failure load of rowlock wall reinforced with constructional column and tie bar, or with constructional column and horizontal reinforced concrete band,were increased significantly compared with rowlock wall without reinforcement measure. The reinforced rowlock wall has better ductility, whereas rowlock walls without reinforcement measure show obvious brittleness.

2007 ◽  
Author(s):  
David E. Kretschmann ◽  
Ron Faller ◽  
Jason Hascall ◽  
John Reid ◽  
Dean Sicking ◽  
...  

Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 160-172
Author(s):  
G. Hathaway ◽  
L. L. Williams

We report test results searching for an effect of electrostatic charge on weight. For conducting test objects of mass of order 1 kg, we found no effect on weight, for potentials ranging from 10 V to 200 kV, corresponding to charge states ranging from 10−9 to over 10−5 coulombs, and for both polarities, to within a measurement precision of 2 g. While such a result may not be unexpected, this is the first unipolar, high-voltage, meter-scale, static test for electro-gravitic effects reported in the literature. Our investigation was motivated by the search for possible coupling to a long-range scalar field that could surround the planet, yet go otherwise undetected. The large buoyancy force predicted within the classical Kaluza theory involving a long-range scalar field is falsified by our results, and this appears to be the first such experimental test of the classical Kaluza theory in the weak field regime, where it was otherwise thought identical with known physics. A parameterization is suggested to organize the variety of electro-gravitic experiment designs.


2021 ◽  
Vol 13 (3) ◽  
pp. 1569
Author(s):  
Namki Choi ◽  
Byongjun Lee ◽  
Dohyuk Kim ◽  
Suchul Nam

System strength is an important concept in the integration of renewable energy sources (RESs). However, evaluating system strength is becoming more ambiguous due to the interaction of RESs. This paper proposes a novel scheme to define the actual interaction boundaries of RESs using the power flow tracing strategy. Based on the proposed method, the interaction boundaries of RESs were identified at the southwest side of Korea Electric Power Corporation (KEPCO) systems. The test results show that the proposed approach always provides the identical interaction boundaries of RESs in KEPCO systems, compared to the Electric Reliability Council of Texas (ERCOT) method. The consistent boundaries could be a guideline for power-system planners to assess more accurate system strength, considering the actual interactions of the RESs.


2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


2014 ◽  
Vol 488-489 ◽  
pp. 497-500
Author(s):  
You Lin Zou ◽  
Pei Yan Huang

Deem test results from the low reversed cyclic loading quasi-static test with 2 RC columns as the basic information of secant stiffness damage of the reference column and take use of the TMS instrument in the test to artificially make the damage percentage of secant stiffness of the RC column as 33%, 50% and 66%, 6 damaged columns in total; reinforce the 6 damaged columns and 2 undamaged ones under the same conditions with AFL, through quasi-static contrast test. Test results show that it is able to effectively boost horizontal ultimate bearing capacity and ductility deformability of the RC columns with AFL for reinforcement; besides, there is a linear function relationship between horizontal ultimate bearing capacity, target ductility factor, and damage percentage of secant stiffness.


2005 ◽  
Vol 11 (3) ◽  
pp. 170-173 ◽  
Author(s):  
Mehmet Dündar ◽  
Izzet Koçak ◽  
Nil Çulhaci ◽  
Haluk Erol

2011 ◽  
Vol 243-249 ◽  
pp. 1528-1535
Author(s):  
Yu Zhao ◽  
Yong Jun Zhou ◽  
Jing Sun ◽  
Jin Tao Tang ◽  
Xu Li

Cable-stayed self-anchored suspension composed bridges have novel structures and aesthetic appearance with complex system and difficulty for design and construction. In order to acquire a better knowledge of the load-carrying capability of this type of bridges, based on a real bridge and the theory of abnormal similarity, a full-bridge scaled down(1:20) test model was built to simulate the whole process of construction. The test results were preferably fit the theoretical calculation value. It can be seen that the design of the bridge was reasonable, and the accuracy of the calculation of finite element model was verified at the same time. The test and the related results can be used as the reference for the test and design of the similar bridges.


Sign in / Sign up

Export Citation Format

Share Document