Investigating the use of small-diameter softwood as guardrail posts: static test results

Author(s):  
David E. Kretschmann ◽  
Ron Faller ◽  
Jason Hascall ◽  
John Reid ◽  
Dean Sicking ◽  
...  
Physics ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 160-172
Author(s):  
G. Hathaway ◽  
L. L. Williams

We report test results searching for an effect of electrostatic charge on weight. For conducting test objects of mass of order 1 kg, we found no effect on weight, for potentials ranging from 10 V to 200 kV, corresponding to charge states ranging from 10−9 to over 10−5 coulombs, and for both polarities, to within a measurement precision of 2 g. While such a result may not be unexpected, this is the first unipolar, high-voltage, meter-scale, static test for electro-gravitic effects reported in the literature. Our investigation was motivated by the search for possible coupling to a long-range scalar field that could surround the planet, yet go otherwise undetected. The large buoyancy force predicted within the classical Kaluza theory involving a long-range scalar field is falsified by our results, and this appears to be the first such experimental test of the classical Kaluza theory in the weak field regime, where it was otherwise thought identical with known physics. A parameterization is suggested to organize the variety of electro-gravitic experiment designs.


2014 ◽  
Vol 488-489 ◽  
pp. 497-500
Author(s):  
You Lin Zou ◽  
Pei Yan Huang

Deem test results from the low reversed cyclic loading quasi-static test with 2 RC columns as the basic information of secant stiffness damage of the reference column and take use of the TMS instrument in the test to artificially make the damage percentage of secant stiffness of the RC column as 33%, 50% and 66%, 6 damaged columns in total; reinforce the 6 damaged columns and 2 undamaged ones under the same conditions with AFL, through quasi-static contrast test. Test results show that it is able to effectively boost horizontal ultimate bearing capacity and ductility deformability of the RC columns with AFL for reinforcement; besides, there is a linear function relationship between horizontal ultimate bearing capacity, target ductility factor, and damage percentage of secant stiffness.


2011 ◽  
Vol 243-249 ◽  
pp. 1528-1535
Author(s):  
Yu Zhao ◽  
Yong Jun Zhou ◽  
Jing Sun ◽  
Jin Tao Tang ◽  
Xu Li

Cable-stayed self-anchored suspension composed bridges have novel structures and aesthetic appearance with complex system and difficulty for design and construction. In order to acquire a better knowledge of the load-carrying capability of this type of bridges, based on a real bridge and the theory of abnormal similarity, a full-bridge scaled down(1:20) test model was built to simulate the whole process of construction. The test results were preferably fit the theoretical calculation value. It can be seen that the design of the bridge was reasonable, and the accuracy of the calculation of finite element model was verified at the same time. The test and the related results can be used as the reference for the test and design of the similar bridges.


2013 ◽  
Vol 2013 (1) ◽  
pp. 000414-000414 ◽  
Author(s):  
Noriyoshi Shimizu ◽  
Wataru Kaneda ◽  
Hiromu Arisaka ◽  
Naoyuki Koizumi ◽  
Satoshi Sunohara ◽  
...  

In recent years, it has become apparent that the conventional FC-BGA (Flip Chip Ball Grid Array) substrate manufacturing method (Electroless Cu plating, Desmear, Laser Drilling processing) is reaching its limits for finer wiring dimensions and narrower pitches of the flip chip pad. On the other hand, the demand for miniaturization and higher density continues to increase. Our solution is the Organic Multi Chip Package, a combined organic interposer and organic substrate. Unlike a conventional 2.5D interposer that is separately manufactured and then attached to a substrate PWB (Printed Wire Board), the interposer of our Organic Multi Chip Package is built directly onto an organic substrate. First normal build-up layers are laminated on both sides of the PWB core and metal traces formed by conventional semi-additive techniques. After the back side is coated with a typical SR layer for FC-BGA, the top surface and its laser-drilled vias are smoothed by CMP (Chemical Mechanical Polishing). A thin-film process is used to deposit the interposer's insulating resin layers. Then normal processes are applied to open small diameter vias and a metal seed layer is sputtered on. The wiring is patterned, and the metal traces are fully formed by plating. Finally, the Cu pads on the top layer are treated by OSP (Organic Solderability Preservative). In this paper we discuss results using a prototype 40 mm × 40 mm Organic Multi Chip Package. The prototype's organic substrate has a two-metal layer core with 100 μm diameter through-holes, two build-up layers on the chip side, and three plus a solder resist layer on the BGA side. The interposer has four wiring layers. Thus the structure of the prototype is 4+(2/2/3). For evaluation purposes, there are four patterns of lines and spaces on the interposer: 2 μm/2 μm, 3 μm/3 μm, 4 μm/4 μm, and 5 μm/5 μm. The metal trace thicknesses are 2.5 μm, via diameters are 10 μm, pad pitches are 40 μm, and the Cu pad diameters are 25 μm. These dimensions allow the Organic Multi Chip Package to easily make the pitch conversions of the IC to the PCB. With a 4+(2/2/3) structure, the Organic Multi Chip Package is asymmetric, raising concerns about package warping. However, the warping can be reduced by the optimization of structure and materials. In this way, we were able to connect a high pin-count logic chip to standard Wide I/O memory chips. We think that there are at least two obvious advantages of the Organic Multi Chip Package. The first is a total height reduction compared to a structure with a separate silicon interposer attached to a PWB substrate. The Organic Multi Chip Package, with its built-on interposer, eliminates the need for solder joints between the interposer and substrate. In addition, the fine resin layers make our interposer much thinner than a silicon interposer. The second advantage is simpler assembly. Our structure does not require the separate step of assembling an interposer to the substrate. Assembly costs should be lower and yields higher. In this paper we demonstrate the successful attainment of fine lines and spaces on the Organic Multi Chip Package. We also show and discuss reliability test results.


1985 ◽  
Vol 107 (4) ◽  
pp. 534-542 ◽  
Author(s):  
C. L. Hough ◽  
B. Das

The wear characteristics of polycrystalline diamond compact (PDC) drill bits were investigated in the context of drilling small holes in a hard abrasive medium. An efficient method for measuring wear of the PDC drill bits was developed. The wear test results were grouped or categorized in terms of rotary speed, feed and wear or failure characteristics. Contrary to the three classical wear phases (break-in, uniform wear and rapid breakdown) of the single material cutters, four distinctive wear phases were formed for the PDC cutters: I–break-in, II–diamond wear, III–carbide wear, and IV–rapid breakdown. The characteristics of the wear phases were identified and some suggestions were made to alleviate the wear problem.


Author(s):  
K. K. Botros ◽  
J. Geerligs ◽  
A. Glover ◽  
G. Nahas

A procedure for pressure testing of small diameter pipelines (up to NPS 12) using air has been developed based on pilot test results conducted on a controlled simulated test section of a small volume = 18.5 m3. This paper describes the simulated test facility and presents results of five simulated tests with different size pinhole leaks. A model describing leaks and effects of variation in air temperature has been developed, and together with the test results, a criteria for the upper limit of pipe volume to leak area ratio for implementation of air testing for various pipe sizes, has been arrived at. The procedure was then developed and utilized on a project approved by the Alberta Energy Utility Board. Results of this test on a new 12.2 km NPS 8 pipeline lateral in Alberta are also presented.


2010 ◽  
Vol 152-153 ◽  
pp. 1313-1316
Author(s):  
Guo Jun Hu ◽  
Zhi Quan Hong

In this paper, the compression test on the bulk nanocrystalline sliver ( n Ag) with average grain size of 50 nm was made. The stress-strain curves under different strain rates were obtained by test. The test results show that the mechanical behavior of n Ag is rate-dependent, and the dynamic compress yield stress are about 1.5 times of that n Ag in static test condition; The effect of strain harding on n Ag is smaller than that of coarse-grained silver (c Ag) in plastic deformation; The relationship between the yield strength and the logarithm of strain rate is approximately linear.


2011 ◽  
Vol 255-260 ◽  
pp. 209-214
Author(s):  
Xu Jie Sun ◽  
Jian Ping Cao ◽  
Wen Zhong Zheng

To make sure the seismic behavior of outer-jacketing mega frame for storey-adding, a low-cyclic loading test of prestressed concrete beam and a pseudo-static test of Mega frame were analyzed by elastic-plastic finite element program IDARC2D, compared with the test results, skeleton hysteretic curves and restoring force models of structural member were determined. They were used in IDARC2D to study the seismic behavior of mega frame for storey-adding. Some structures designed complied with the Code for Seismic Design of Buildings (GB50011-2001) and correlative literatures about collapse, these structures were reanalyzed after enhancing their seismic measures suitably, collapse were avoided. They are: the main frame of outer-jacketing mega frame in the zone of seismic fortification intensity 8 conforming to seismic grade 1-st, the height of mega frame under 50m conforming to seismic grade 2-nd and that over 50m conforming to seismic grade 1-st in zone of seismic fortification intensity 7. Research achievements will provide reference to engineering application of this structural system.


2010 ◽  
Vol 163-167 ◽  
pp. 3787-3793
Author(s):  
Wei Min Tang ◽  
Xiao Bing Li ◽  
Lin Zhu Sun ◽  
Guo Ping Jin ◽  
Zhao Hui Li ◽  
...  

Based on pseudo-static test of rowlock wall with different constructional measures by MTS loading system, the position of initial crack, distribution of crack, cracking load, failure load, failure state are studied, in order to provide test basis for the determination of economical and effective construction measures for rowlock wall. The test results show that the cracking load and failure load of rowlock wall reinforced with constructional column and tie bar, or with constructional column and horizontal reinforced concrete band,were increased significantly compared with rowlock wall without reinforcement measure. The reinforced rowlock wall has better ductility, whereas rowlock walls without reinforcement measure show obvious brittleness.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Constantin E. Chalioris ◽  
Constantin P. Papadopoulos ◽  
Constantin N. Pourzitidis ◽  
Dimitrios Fotis ◽  
Kosmas K. Sideris

This paper presents the findings of an experimental study on the application of a reinforced self-compacting concrete jacketing technique in damaged reinforced concrete beams. Test results of 12 specimens subjected to monotonic loading up to failure or under repeated loading steps prior to total failure are included. First, 6 beams were designed to be shear dominated, constructed by commonly used concrete, were initially tested, damaged, and failed in a brittle manner. Afterwards, the shear-damaged beams were retrofitted using a self-compacting concrete U-formed jacket that consisted of small diameter steel bars and U-formed stirrups in order to increase their shear resistance and potentially to alter their initially observed shear response to a more ductile one. The jacketed beams were retested under the same loading. Test results indicated that the application of reinforced self-compacting concrete jacketing in damaged reinforced concrete beams is a promising rehabilitation technique. All the jacketed beams showed enhanced overall structural response and 35% to 50% increased load bearing capacities. The ultimate shear load of the jacketed beams varied from 39.7 to 42.0 kN, whereas the capacity of the original beams was approximately 30% lower. Further, all the retrofitted specimens exhibited typical flexural response with high values of deflection ductility.


Sign in / Sign up

Export Citation Format

Share Document