Seismic Behavior of Shifang Telecom Building under Conventional Earthquakes

2010 ◽  
Vol 163-167 ◽  
pp. 4227-4231
Author(s):  
Xiao Hu ◽  
Yong Tao Gao

To study the seismic behavior under conventional earthquakes, according to a case of Shifang Telecom Building (STB) under 5.12 earthquake, this paper makes the computation of internal force and deformation of structure; then compares the seismic behavior of two different models with spectrum analysis and time-history analysis. The conclusion shows that STB can approximately meet requirements for fortification against seismic impact under conventional earthquakes; the steel tower on top can amplify the seismic effect indeed and the weakness of numerical simulation tallies with the reality.

2010 ◽  
Vol 163-167 ◽  
pp. 4232-4236
Author(s):  
Xiao Hu ◽  
Yong Tao Gao

The earthquake resistant behavior of buildings with steel tower on top is different from ordinary buildings. In order to investigate the deformations, internal force and damage of structure under rare earthquake, based on a case of Shifang Telecom Building (STB) under 5.12 earthquake, the static elasto-plastic analysis is carried out. This paper compares the seismic behavior of structure under different loading cases, and studies the weakness and plastic hinge of the building. The result shows the structure can meet the requirements of non-collapse under rare earthquake, the top steel tower can amplify the seismic effect, and numerical simulation tallies with the reality.


2013 ◽  
Vol 351-352 ◽  
pp. 849-853
Author(s):  
Lan Chen ◽  
De Long Lu ◽  
Xiao Gang Yin

Based on the vertical seismic information, the vertical seismic response spectrum was calculated by Matlab Lsim function. The seismic effect of Kiewitt-Lamella suspended-dome was measured by dynamic to static ratio. According to the EL-Centro seismic wave, it analyzed and compared the dynamic to static ratios which were calculated by the following four vertical seismic calculation methods respectively: the simplified method of specification, the mode-superposition response spectrum methods based on the horizontal earthquake affecting coefficients and the vertical acceleration response spectrum respectively, and the time history analysis method. Analysis shows that: For the seismic effect, the time history analysis method is larger than the other three methods, and the method based on the vertical acceleration response spectrum is closer to the time history analysis method. Owing to large difference of the four methods for seismic effect, various methods should be adopted to ensure the safety of vertical seismic design.


2012 ◽  
Vol 204-208 ◽  
pp. 1215-1219
Author(s):  
Dai Guo Chen ◽  
Yong Yao ◽  
Hai Jun Wang ◽  
Yong Jun Deng ◽  
Jing Zhou

Using the finite element analysis software ANSYS to analyze the overall dynamic response of one specific high-rise steel-frame,including modal analysis, spectrum analysis and time-history analysis. Then do a comparative analysis with the results of calculation by the professional software PKPM. As the results: the structural calculation can use layer model; Larger mutations appeared in the stress of weak-story and the relevant story need to reinforce or set up supports under the anti-seismic design in the elastic time-history analysis of structure; Y-direction translation is preferentially happened in first order modal shape and lateral-torsional coupling happened in third order modal shape among the vibration mode analysis; The response spectrum analysis of frequent earthquake show that seismic action is more serious in ground layer.


Author(s):  
mahaboob subhani* Shaik ◽  
Budda Beeraiah

The improvements in (3D) three–dimensional underlying examination and processing assets have permitted the effective and safe plan of taller constructions. These constructions are the outcome of expanding metropolitan densification and financial suitability. The pattern towards continuously taller constructions has requested a move from the conventional strength based plan approach of structures to an emphasis on obliging the general movement of the design. Presently a day's supported cement (RC) divider outline structures are generally suggested for metropolitan development in zones with high SE danger. Presence of shear dividers bestows an enormous solidness to the sidelong power opposing arrangement of the RC building. Appropriate specifying of shear dividers can likewise prompt bendable conduct of such constructions during solid quake shaking. One of the remarkable boundaries impacting the shear divider (SD) SE (SE) conduct outline structures is the SD region proportion. In this manner a scientific examination is performed to assess the impact of Shear Wall Area to floor zone proportion (SW/FZP %) on the SE conduct of multistoried RC structures with delicate story at ground floor. For this reason, 12 structure plans that have Five, Eight and Twelve stories with SW/FZP % going somewhere in the range of 0.70% and 1.31% in the two ways are created. Here, the conduct of these plans under quake stacking is evaluated via doing Response Spectrum Analysis and Linear Time History Analysis utilizing primary examination programming E-TABS. Reaction Spectrum Analysis is finished by SE code IS 1893:2002. Straight Time History Analysis is completed by considering the three ground movement records to be specific Bhuj, Chamba and Uttarkasi. The primary boundaries considered in this investigation are the connection SW/FZP % has with base shear and rooftop dislodging, story uprooting and story float. The logical outcomes demonstrated that building plans with SW/FZP % equivalent to 1% acted sufficiently under tremor loads. Furthermore when the SW/FZP % expanded past 1% it is seen that the improvement of the SE presentation isn't as huge.


2019 ◽  
Vol 8 (4) ◽  
pp. 12428-12435 ◽  

Silos usually work as storage structures between offer and demand for varied product, and their structural safety has long been of interest to the engineering profession due to seismic effect. This is especially true for dynamically loaded silos, e.g., just in case of seismic excitation. Significantly thin-walled cylindrical silos are extremely susceptible to seismic Iatrogenic pressures which might cause essential buckling phenomena of the silo shell. The analysis of silos may be administered in two, alternative ways. Within the initial, self-Wight, the seismic loading is sculpturesque through statically equivalent loads acting on the shell. As an alternative, a time history analysis could be administered, during which nonlinear phenomena because of the filling as well because the interaction between the shells, and therefore, the granular material is taken under consideration. The paper presents a comparison of an analytical design of steel and concrete comparison. Do all different types of loads which is action on the steel and concrete silo those approaches. The model used for the nonlinear time history analysis considers the granular material by suggests that of thinker granular strain approach for hypoplasticity theory. The interaction effects between the two types of Reaction and the cost comparison of the silos.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Nidiasari Jati Sunaryati Eem Ikhsan

Struktur rangka baja pemikul momen merupakan jenis struktur baja tahan gempa yang populer digunakan. Daktilitas struktur yang tinggi merupakan salah satu keunggulan struktur ini, sehingga mampu menahan deformasi inelastik yang besar. Dalam desain, penggunaan metode desain elastis berupa evaluasi non-linear static (Pushover analysis) maupun evaluasi non-linear analisis (Time History Analysis) masih digunakan sebagai dasar perencanaan meskipun perilaku struktur sebenarnya saat kondisi inelastik tidak dapat digambarkan dengan baik. Metode Performance-Based Plastic Design (PBPD) berkembang untuk melihat perilaku struktur sebenarnya dengan cara menetapkan terlebih dahulu simpangan dan mekanisme leleh struktur sehingga gaya geser dasar yang digunakan adalah sama dengan usaha yang dibutuhkan untuk mendorong struktur hingga tercapai simpangan yang telah direncanakan. Studi dilakukan terhadap struktur baja 5 lantai yang diberi beban gempa berdasarkan SNI 1726, 2012 dan berdasarkan metode PBPD. Hasil analisa menunjukkan bahwa struktur yang diberi gaya gempa berdasarkan metode PBPD mencapai simpangan maksimum sesuai simpangan rencana dan kinerja struktur yang dihasilkan lebih baik .


Author(s):  
Fatemeh Jalayer ◽  
Hossein Ebrahimian ◽  
Andrea Miano

AbstractThe Italian code requires spectrum compatibility with mean spectrum for a suite of accelerograms selected for time-history analysis. Although these requirements define minimum acceptability criteria, it is likely that code-based non-linear dynamic analysis is going to be done based on limited number of records. Performance-based safety-checking provides formal basis for addressing the record-to-record variability and the epistemic uncertainties due to limited number of records and in the estimation of the seismic hazard curve. “Cloud Analysis” is a non-linear time-history analysis procedure that employs the structural response to un-scaled ground motion records and can be directly implemented in performance-based safety-checking. This paper interprets the code-based provisions in a performance-based key and applies further restrictions to spectrum-compatible record selection aiming to implement Cloud Analysis. It is shown that, by multiplying a closed-form coefficient, code-based safety ratio could be transformed into simplified performance-based safety ratio. It is shown that, as a proof of concept, if the partial safety factors in the code are set to unity, this coefficient is going to be on average slightly larger than unity. The paper provides the basis for propagating the epistemic uncertainties due to limited sample size and in the seismic hazard curve to the performance-based safety ratio both in a rigorous and simplified manner. If epistemic uncertainties are considered, the average code-based safety checking could end up being unconservative with respect to performance-based procedures when the number of records is small. However, it is shown that performance-based safety checking is possible with no extra structural analyses.


Sign in / Sign up

Export Citation Format

Share Document