Static Behavior of Layered Fiber Reinforced Concrete T-Shaped Beam

2010 ◽  
Vol 168-170 ◽  
pp. 2037-2043
Author(s):  
Yin Gu ◽  
Wei Dong Zhuo ◽  
Yu Ting Qiu

This paper proposes a concept of layered fiber reinforced concrete (LFRC) beam. In the concept of a LFRC beam, low-modulus fiber and high-modulus fiber are randomly dispersed and uniformly distributed into the concrete matries of the compression and tension zones, respectively. The static behaviors of LFRC beam are investigated from both experimental and numerical aspects. Four-point bending tests are performed on two simply supported T-shaped LFRC beam specimens and an ordinary T-shaped RC beam specimen with large scales. Comparison between the testing results of LFRC and RC beam specimens shows that the initial cracking load, flexural toughness and post-yielding stiffness of a LFRC beam can be significantly improved, but the ultimate loads are nearly without change. Numerical simulations are also carried out to investigate the static behaviors of the LFRC beam specimens. It is found that the simulation results are agreed well with that of tests. Further numerical parameter analysis for the LFRC beam specimens is conducted. The effects of high-modulus fiber volume fraction on the static behaviors of LFRC beams are studied. The research results show that the additions of high-modulus fibers have little effect on the initial stiffness, yielding loads and ultimate loads of LFRC beams; both the load and displacement at the initial cracking point increase linearly with the increasing volume fraction of the high-modulus fiber, but both the yielding displacement and ultimate displacement decrease linearly with the increasing volume fraction of the high-modulus fiber.

2006 ◽  
Vol 33 (6) ◽  
pp. 726-734 ◽  
Author(s):  
Fariborz Majdzadeh ◽  
Sayed Mohamad Soleimani ◽  
Nemkumar Banthia

The purpose of this study was to investigate the influence of fiber reinforcement on the shear capacity of reinforced concrete (RC) beams. Both steel and synthetic fibers at variable volume fractions were investigated. Two series of tests were performed: structural tests, where RC beams were tested to failure under an applied four-point load; and materials tests, where companion fiber-reinforced concrete (FRC) prisms were tested under direct shear to obtain material properties such as shear strength and shear toughness. FRC test results indicated an almost linear increase in the shear strength of concrete with an increase in the fiber volume fraction. Fiber reinforcement enhanced the shear load capacity and shear deformation capacity of RC beams, but 1% fiber volume fraction was seen as optimal; no benefits were noted when the fiber volume fraction was increased beyond 1%. Finally, an equation is proposed to predict the shear capacity of RC beams.Key words: shear strength, fiber-reinforced concrete, RC beam, stirrups, energy absorption capacity, steel fiber, synthetic fiber.


2014 ◽  
Vol 915-916 ◽  
pp. 784-787
Author(s):  
Yan Lv

Based on the mechanical properties experiment of the glass fiber reinforced concrete with 0%0.6%0.8% and 1% glass fiber volume fraction, the mechanics property such as tensile strength, compressive strength, flexural strength and flexural elasticity modulus are analyzed and compared with the plain concrete when the kinds of fiber content changes. The research results show that the effect of tensile strength and flexural strength can be improved to some extent, which also can serve as a reference or basis for further improvement and development the theory and application of the glass fiber reinforced concrete.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Pitcha Jongvivatsakul ◽  
Linh V. H. Bui ◽  
Theethawachr Koyekaewphring ◽  
Atichon Kunawisarut ◽  
Narawit Hemstapat ◽  
...  

In this paper, the performances of reinforced concrete (RC) beams strengthened in shear with steel fiber-reinforced concrete (SFRC) panels are investigated through experiment, analytical computation, and numerical analysis. An experimental program of RC beams strengthened by using SFRC panels, which were attached to both sides of the beams, is carried out to investigate the effects of fiber volume fraction, connection type, and number and diameter of bolts on the structural responses of the retrofitted beams. The current shear resisting model is also employed to discuss the test data considering shear contribution of SFRC panels. The experimental results indicate that the shear effectiveness of the beams strengthened by using SFRC panels is significantly improved. A three-dimensional (3D) nonlinear finite element (FE) analysis adopting ABAQUS is also conducted to simulate the beams strengthened in shear with SFRC panels. The investigation reveals the good agreement between the experimental and analytical results in terms of the mechanical behaviors. To complement the analytical study, a parametric study is performed to further evaluate the influences of panel thickness, compressive strength of SFRC, and bolt pattern on the performances of the beams. Based on the numerical and experimental analysis, a shear resisting model incorporating the simple formulation of average tensile strength perpendicular to the diagonal crack of the strengthened SFRC panels is proposed with the acceptable accuracy for predicting the shear contribution of the SFRC system under various effects.


2006 ◽  
Vol 324-325 ◽  
pp. 827-830
Author(s):  
Cheng Yi ◽  
Shi Zhao Shen ◽  
He Ping Xie ◽  
Chang Jun Wang

Partially High Percentage Fiber Reinforced Concrete (PHPFRC) is a kind of cement composite in which fibers are concentrated with high volume fraction in the tension region of the component under bending. Therefore, PHPFRC possesses much higher load bearing capacity, rigidity, fatigue and fracture properties than conventional steel fiber reinforced concrete (SFRC) while its cost is similar to that of SFRC. In this paper, the fatigue test of PHPFRC is carried out to gain its flexural fatigue damage evolution rule. It is found from the test that, PHPFRC have long post-crack fatigue life and its fatigue damage is tough damage. Based on the continuum damage mechanics and fatigue behavior of the specimens, a fatigue damage variable D for PHPFRC is defined and the elementary form of damage evolution function is determined. For the specimens in which average fiber volume fraction are 1.2% and local fiber volume fraction are 10%, the function parameters and the damage threshold value are given according to the test results.


2017 ◽  
Vol 744 ◽  
pp. 3-7 ◽  
Author(s):  
Asif Jalal ◽  
Nasir Shafiq ◽  
Ehsan Nikbakht ◽  
Rabinder Kumar ◽  
Muhammad Zahid

This study focuses on the study of the mechanical behavior of non-metallic hybrid Basalt-PVA fiber reinforced concrete. Total five mixes were investigated with one control plain concrete and four with fiber volume fraction of 0.3%, 0.6%, 0.9% and 1.2%. Basalt and PVA were used in same quantity. Fiber decreased workability, therefore superplasticizer was used to maintain workability constant. The increase in superplasticizer and fiber content decreased compression, split tensile and flexure strengths because of formation of big size pores. Whereas fiber enhanced the post peak load zone in the load-deflection curve. Fiber improved the bridging action by increasing energy absorption. Fiber vanished the brittle behavior of high strength concrete and increased first crack toughness, flexure toughness and also maximum deflection. 0.3% volume fraction of fiber was found to be optimum with the negligible decrease in compression, split tensile and flexure strength while caused the considerable increase in first crack toughness, flexure toughness, and maximum deflection.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 159 ◽  
Author(s):  
Seungwon Kim ◽  
Seungyeon Han ◽  
Cheolwoo Park ◽  
Kyong-Ku Yun

The compressive stress of concrete is used as a design variable for reinforced concrete structures in design standards. However, as the performance-based design is being used with increasing varieties and strengths of concrete and reinforcement bars, mechanical properties other than the compressive stress of concrete are sometimes used as major design variables. In particular, the evaluation of the mechanical properties of concrete is crucial when using fiber-reinforced concrete. Studies of high volume fractions in established compressive behavior prediction equations are insufficient compared to studies of conventional fiber-reinforced concrete. Furthermore, existing prediction equations for the mechanical properties of high-performance fiber-reinforced cementitious composite and high-strength concrete have limitations in terms of the strength and characteristics of contained fibers (diameter, length, volume fraction) even though the stress-strain relationship is determined by these factors. Therefore, this study developed a high-performance slurry-infiltrated fiber-reinforced cementitious composite that could prevent the fiber ball phenomenon, a disadvantage of conventional fiber-reinforced concrete, and maximize the fiber volume fraction. Then, the behavior characteristics under compressive stress were analyzed for fiber volume fractions of 4%, 5%, and 6%.


Author(s):  
P. Balaguru ◽  
Anil Khajuria

The mechanical properties of lightweight and normal concrete containing nylon polymeric fibers are presented. Fiber reinforced concrete made with nylon fibers was evaluated. The 19-mm-long fibers were in single filament form. The control concrete was designed for a compressive strength of 20 MPa. The primary independent variable was fiber volume fraction. The response variables were air content, unit weight of fresh concrete, compressive strength, modulus of rupture (flexural strength) and toughness, splitting tensile strength, and impact strength. The addition of fibers decreased the slump values. The decrease was negligible at fiber contents of 0.45 and 0.6 kg/m3. The fibers distributed well in the matrix. Fibers could be directly added in the mixer. The effect fibers had on unit weight of concrete is negligible. Addition of fibers up to 2.4 kg/m3 did not change the compressive, flexural, and splitting tensile strengths appreciably. Impact strength and flexural toughness increased consistently with the increase of fiber volume fraction.


2010 ◽  
Vol 163-167 ◽  
pp. 3569-3574
Author(s):  
Hong Qiang Cheng ◽  
Dan Ying Gao

Shrinkage experiments were done to determine the influence of the volume fraction of steel fiber-reinforcement on the bonding behavior between new concrete and old concrete. The mechanics of the model of restricted shrinkage upon the adherence of new steel fiber reinforced concrete to old concrete are described. The results demonstrate that the difference of shrinkage between the new and the old concrete can been reduced by adding steel fiber to the new concrete. The decrease of shrinkage difference reduces the shrinkage force at the adhesive interface, which improves the adhesion of new concrete to old concrete and the magnitude of the decrease of shrinkage difference is correlated to the steel fiber volume fraction.


The study of fracture mechanics was very much essential because it gives clear idea of arising and propagation of cracks, cause for failure, life of structure, etc. The main aim of this research was to study the fracture behavior of fiber reinforced concrete which was reinforced with polypropylene fiber. The fiber used in concrete with different volume fraction like 0.5%, 0.75% and 1% of total volume of cementitious material. The specimens were prepared with different grades of concrete with different dosage of fiber and then subjected to three point bending test. Using test results the fracture properties like fracture energy, flexural strength; stress intensity factor, fracture toughness and stiffness were found. The experimental results showed that effectiveness of polypropylene fiber for different grades of concrete that is normal, medium and high strength concrete increases with increase in fiber volume and also the fracture properties of fiber reinforced concrete increases with increase in fiber volume and effectiveness of fiber was found for dosage of about 0.75-1% volume


Sign in / Sign up

Export Citation Format

Share Document