Testing and Evaluation of Infrared Radiation Property of Cordierite Based Glass-Ceramic Materials

2010 ◽  
Vol 177 ◽  
pp. 455-458 ◽  
Author(s):  
Shu Ming Wang ◽  
Ying Chun Zhang ◽  
Feng Hua Kuang ◽  
Qing Zhi Yan ◽  
Chang Chun Ge ◽  
...  

In this article we present the testing, evaluation of infrared radiation properties of polycrystalline materials especially as cordierite-based glass-ceramics. Researches aim to make a comprehensive and systematic exposition of emissivity definition, test principles and test methods. And on the basis of measurement results of the infrared emissivity of cordierite-based glass-ceramics, the Infrared radiation property of this polycrystalline material was discussed. Research has a positive significance on the development of the infrared radiation heating and drying materials.

2011 ◽  
Vol 509 (6) ◽  
pp. 2819-2823 ◽  
Author(s):  
Shu-Ming Wang ◽  
Feng-Hua Kuang ◽  
Qing-Zhi Yan ◽  
Chang-Chun Ge ◽  
Long-Hao Qi

Author(s):  
K. J. Morrissey

Grain boundaries and interfaces play an important role in determining both physical and mechanical properties of polycrystalline materials. To understand how the structure of interfaces can be controlled to optimize properties, it is necessary to understand and be able to predict their crystal chemistry. Transmission electron microscopy (TEM), analytical electron microscopy (AEM,), and high resolution electron microscopy (HREM) are essential tools for the characterization of the different types of interfaces which exist in ceramic systems. The purpose of this paper is to illustrate some specific areas in which understanding interface structure is important. Interfaces in sintered bodies, materials produced through phase transformation and electronic packaging are discussed.


2019 ◽  
Vol 6 (2) ◽  
pp. 101-137
Author(s):  
RUSTAM KHAKIMOVICH RAKHIMOV

The article presents the main basic laws of nature and modern theories of the nature of electromagnetic radiation, its generation, characteristics, and laws of reflection, absorption and scattering of light. The principle of transformation of the radiation spectrum of the primary source using the developed ceramic materials are shown, as well as experimental results of the interaction of IR radiation with matter and various mechanisms of influence on various objects and processes are described.


MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3123-3131
Author(s):  
Mario Flores Nicolas ◽  
Marina Vlasova ◽  
Pedro Antonio Márquez Aguilar ◽  
Mykola Kakazey ◽  
Marcos Mauricio Chávez Cano ◽  
...  

AbstractThe low-temperature synthesis of bricks prepared from high-siliceous clays by the method of plastic molding of blanks was used. For the preparation of brick blanks, binary and ternary mixtures of high-siliceous clays, black sand, and bottle glass cullet were used. Gray-black low-porosity and high-porosity ceramics was obtained by sintering under conditions of oxygen deficiency. It has been established that to initiate plastic in mixtures containing high-siliceous clay, it is necessary to add montmorillonite/bentonite additives, carry out low-temperature sintering, and introduce low-melting glass additives with a melting point ranging from 750 to 800 °C. The performed investigations have shown that the sintering of mixtures with a total content of iron oxide of about 5 wt% under reducing conditions at Tsint. = 800°C for 8 h leads to the formation of glass ceramics consisting of quartz, feldspars, and a phase. The main sources of the appearance of a dark color is the formation of [Fe3+O4]4- and [Fe3+O6]9- anions in the composition of the glass phase and feldspars. By changing the contents of clay, sand, and glass in sintering, it is possible to obtain two types of ceramic materials: (a) in the form of building bricks and (b) in the form of porous fillers.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1321
Author(s):  
Tomasz K. Pietrzak ◽  
Marek Wasiucionek ◽  
Jerzy E. Garbarczyk

This review article presents recent studies on nanostructured glass-ceramic materials with substantially improved electrical (ionic or electronic) conductivity or with an extended temperature stability range of highly conducting high-temperature crystalline phases. Such materials were synthesized by the thermal nanocrystallization of selected electrically conducting oxide glasses. Various nanostructured systems have been described, including glass-ceramics based on ion conductive glasses (silver iodate and bismuth oxide ones) and electronic conductive glasses (vanadate-phosphate and olivine-like ones). Most systems under consideration have been studied with the practical aim of using them as electrode or solid electrolyte materials for rechargeable Li-ion, Na-ion, all-solid batteries, or solid oxide fuel cells. It has been shown that the conductivity enhancement of glass-ceramics is closely correlated with their dual microstructure, consisting of nanocrystallites (5–100 nm) confined in the glassy matrix. The disordered interfacial regions in those materials form “easy conduction” paths. It has also been shown that the glassy matrices may be a suitable environment for phases, which in bulk form are stable at high temperatures, and may exist when confined in nanograins embedded in the glassy matrix even at room temperature. Many complementary experimental techniques probing the electrical conductivity, long- and short-range structure, microstructure at the nanometer scale, or thermal transitions have been used to characterize the glass-ceramic systems under consideration. Their results have helped to explain the correlations between the microstructure and the properties of these systems.


1997 ◽  
Vol 44 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Takashi Koyama ◽  
Kiyohiro Teruuchi ◽  
Teruyoshi Tanase ◽  
Mitsue Ogawa ◽  
Soon-Gi Shin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document