Energy saving technology for sintering of black bricks from high-siliceous clay

MRS Advances ◽  
2020 ◽  
Vol 5 (61) ◽  
pp. 3123-3131
Author(s):  
Mario Flores Nicolas ◽  
Marina Vlasova ◽  
Pedro Antonio Márquez Aguilar ◽  
Mykola Kakazey ◽  
Marcos Mauricio Chávez Cano ◽  
...  

AbstractThe low-temperature synthesis of bricks prepared from high-siliceous clays by the method of plastic molding of blanks was used. For the preparation of brick blanks, binary and ternary mixtures of high-siliceous clays, black sand, and bottle glass cullet were used. Gray-black low-porosity and high-porosity ceramics was obtained by sintering under conditions of oxygen deficiency. It has been established that to initiate plastic in mixtures containing high-siliceous clay, it is necessary to add montmorillonite/bentonite additives, carry out low-temperature sintering, and introduce low-melting glass additives with a melting point ranging from 750 to 800 °C. The performed investigations have shown that the sintering of mixtures with a total content of iron oxide of about 5 wt% under reducing conditions at Tsint. = 800°C for 8 h leads to the formation of glass ceramics consisting of quartz, feldspars, and a phase. The main sources of the appearance of a dark color is the formation of [Fe3+O4]4- and [Fe3+O6]9- anions in the composition of the glass phase and feldspars. By changing the contents of clay, sand, and glass in sintering, it is possible to obtain two types of ceramic materials: (a) in the form of building bricks and (b) in the form of porous fillers.

2020 ◽  
Vol 70 (339) ◽  
pp. 221
Author(s):  
E. Reyes ◽  
J. Massana ◽  
F. Alonso ◽  
N. León ◽  
A. Moragues

In this paper, the influence of additions of nanosilica (nSi) and microsilica (mSi) on the behav­iour of binary and ternary mixtures in chloride environments is studied. The main objective is to obtain high-performance self-compacting concrete (HPSCC) with a high durability which can meet specific demands in such aggressive environments. Ten blends were manufactured using Portland cement (CEM I 52.5 R) and additions of nSi and mSi in binary and ternary mixtures. The results of three tests frequently used to evaluate resistance to chloride penetration– electrical resistivity, migration and chloride diffusion –were studied and compared. Both binary and ternary mixtures presented significant improvements in chloride resistance, generally in proportion to the total content of the addition. In all the ternary mixtures, high resistivity is obtained, which indicates that such mixtures have a notably low chloride penetrability. Furthermore, these mixtures provided extremely low chloride diffusion coefficients even at small addition ratios.


2008 ◽  
Vol 59 (5) ◽  
Author(s):  
Viorel Feroiu ◽  
Dan Geana ◽  
Catinca Secuianu

Vapour � liquid equilibrium, thermodynamic and volumetric properties were predicted for three pure hydrofluorocarbons: difluoromethane (R32), pentafluoroethane (R125) and 1,1,1,2 � tetrafluoroethane (R134a) as well as for binary and ternary mixtures of these refrigerants. Three cubic equations of state GEOS3C, SRK (Soave � Redlich � Kwong) and PR (Peng � Robinson) were used. A wide comparison with literature experimental data was made. For the refrigerant mixtures, classical van der Waals mixing rules without interaction parameters were used. The GEOS3C equation, with three parameters estimated by matching several points on the saturation curve (vapor pressure and corresponding liquid volumes), compares favorably to other equations in literature, being simple enough for applications.


1979 ◽  
Vol 44 (8) ◽  
pp. 2378-2383 ◽  
Author(s):  
Libor Červený ◽  
Radka Junová ◽  
Vlastimil Růžička

Hydrogenation of olefinic substrates in binary and ternary mixtures using 5% Pt on silica gel as the catalyst was studied in normal conditions in the liquid phase with methanol or cyclohexane or in solvent-free systems. The effect of the solvent concentration on the selectivity of hydrogenation of the unsaturated alcohol-olefin binary mixtures was investigated. In ternary systems of unsaturated substrates, the effect of each of the substrates on the selectivity of hydrogenation of the remaining two substances was examined. Another system was found in which a jump change of the hydrogenation selectivity occurred on the vanishing of the fastest reacting substance.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1510
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska

This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1321
Author(s):  
Tomasz K. Pietrzak ◽  
Marek Wasiucionek ◽  
Jerzy E. Garbarczyk

This review article presents recent studies on nanostructured glass-ceramic materials with substantially improved electrical (ionic or electronic) conductivity or with an extended temperature stability range of highly conducting high-temperature crystalline phases. Such materials were synthesized by the thermal nanocrystallization of selected electrically conducting oxide glasses. Various nanostructured systems have been described, including glass-ceramics based on ion conductive glasses (silver iodate and bismuth oxide ones) and electronic conductive glasses (vanadate-phosphate and olivine-like ones). Most systems under consideration have been studied with the practical aim of using them as electrode or solid electrolyte materials for rechargeable Li-ion, Na-ion, all-solid batteries, or solid oxide fuel cells. It has been shown that the conductivity enhancement of glass-ceramics is closely correlated with their dual microstructure, consisting of nanocrystallites (5–100 nm) confined in the glassy matrix. The disordered interfacial regions in those materials form “easy conduction” paths. It has also been shown that the glassy matrices may be a suitable environment for phases, which in bulk form are stable at high temperatures, and may exist when confined in nanograins embedded in the glassy matrix even at room temperature. Many complementary experimental techniques probing the electrical conductivity, long- and short-range structure, microstructure at the nanometer scale, or thermal transitions have been used to characterize the glass-ceramic systems under consideration. Their results have helped to explain the correlations between the microstructure and the properties of these systems.


2014 ◽  
Vol 631 ◽  
pp. 18-22 ◽  
Author(s):  
Junji Ikeda ◽  
Takayuki Murakami ◽  
Takayoshi Shimozono ◽  
Reiji Watanabe ◽  
Mikio Iwamoto ◽  
...  

Low temperature degradation free Zirconia toughened alumina (ZTA) has been developed. It is reported that ZTA has higher mechanical strength compared to alumina due to the stress induced transformation and spontaneously transformation of zirconia phase on some ZTA have been occurred. For achieving the higher reliability of artificial joint prosthesis alternative to alumina and other ceramic materials, it is necessary to improve and validate the both mechanical characteristics and phase stability at the same time. We evaluated that microstructure, mechanical characteristics and phase stability of newly developed ZTA (BIOCERAM®AZUL). It was confirmed that four-point bending strength and weibull modulus were extreamly high, and ZTA has higher reliability. There were no significant changes and deterioration in four-point bending strength, crystal structure and wear property with and without accelerated aging test. Newly developed ZTA not only with high mechanical characteristics but also with phase stability could be quite useful as bearing materials in artificial joints for longer clinical use.


Sign in / Sign up

Export Citation Format

Share Document