Thermal Performance Analysis for High-Speed Spindle of Horizontal Machining Center

2011 ◽  
Vol 179-180 ◽  
pp. 298-303
Author(s):  
Zhi Feng Liu ◽  
Zhong Hua Chu ◽  
Qiang Cheng ◽  
Guang Bo Liu

In order to show the thermal performance of spindle by rule and line, firstly, this paper presents a three-dimensional finite element analysis model for thermal analysis of high speed spindle; Then by studying the heat generation and radiation mechanism of the spindle, temperature distribution has been analyzed accurately and intuitively under the heat-stable condition based on the three-dimensional model; Finally effective actions have been proposed to improve the condition of the spindle's heat generation, and thus can guarantee the highly effective characteristic of the spindle in machining process.

2010 ◽  
Vol 129-131 ◽  
pp. 256-260
Author(s):  
Yi Shu Hao ◽  
Chuang Hai ◽  
Xin Xing Zhu

Treating high speed milling theory as the guidance, this paper researched high speed milling process of bracket part based on UG NX. Combined with the structural features of bracket part, three dimensional model is built by UG NX CAD and machining processes are worked out after analysis. UG CAM module was applied to fabricate tool paths. At last, finite element analysis method is introduced to study the processing deformation by UG NX NASTRAN module, based on which measures to restrain processing deformations is advanced and processing sequences are optimized.


2011 ◽  
Vol 295-297 ◽  
pp. 2487-2491
Author(s):  
Jian Qiang Wang

Treating high speed milling theory as the guidance, this paper researched high speed milling process of bracket part based on Pro/E. Combined with the structural features of bracket part, three dimensional model is built by Pro/E and machining processes are worked out after analysis. Pro/E module was applied to fabricate tool paths. At last, finite element analysis method is introduced to study the processing deformation by Pro/E module, based on which measures to restrain processing deformations is advanced and processing sequences are optimized.


2005 ◽  
Vol 8 (5) ◽  
pp. 513-528 ◽  
Author(s):  
Yong-Seon Lee ◽  
Sang-Hyo Kim ◽  
Jun Jung

The dynamic behavior is a complicated characteristic in analysis of a railway bridge when it is incorporated with the effect of railway track. Even though it is not an ignorable component, the coupling effect with the railway track in the dynamic response of a railway bridge has been ignored or just simplified in the past researches. Therefore, this study conducts a numerical analysis of track effect on the railway bridge, and the comparison between the dynamic responses with three-dimensional (3D) discrete support track model and those without it is examined. Dynamic amplitude incorporated with 3D track model is decreased when the train velocity goes up over 250 km/h. This phenomenon shows that the resonance effect has been shifted by the 3D track model, which results in the changes in dynamic characteristics of a railway bridge. Consequently, the coupling effect between bridge and track should be taken account for in the analysis of dynamic response of a railway bridge.


2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


Author(s):  
Iman Goldasteh ◽  
Goodarz Ahmadi ◽  
Andrea Ferro

Particle resuspension is an important source of particulate matter in indoor environments that significantly affects the indoor air quality and could potentially have adverse effect on human health. Earlier efforts to investigate indoor particle resuspension hypothesized that high speed airflow generated at the floor level during the gate cycle is the main cause of particle resuspension. The resuspended particles are then assumed to be dispersed by the airflow in the room, which is impacted by both the ventilation and the occupant movement, leading to increased PM concentration. In this study, a three dimensional model of a room was developed using FLUENT™ CFD package. A RANS approach with the RNG k-ε turbulence model was used for simulating the airflow field in the room for different ventilation conditions. The trajectories of resuspended particulate matter were computed with a Lagrangian method by solving the equations of particle motion. The effect of turbulent dispersion was included with the use of the eddy lifetime model. The resuspension of particles due to gait cycle was estimated and included in the computational model. The dispersion and transport of particles resuspended from flooring as well as particle re-deposition on flooring and walls were simulated. Particle concentrations in the room generated by the resuspension process were evaluated and the results were compared with experimental chamber study data as well as simplified model predictions, and good agreement was found.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Charles Savoldelli ◽  
Elodie Ehrmann ◽  
Yannick Tillier

AbstractWith modern-day technical advances, high sagittal oblique osteotomy (HSOO) of the mandible was recently described as an alternative to bilateral sagittal split osteotomy for the correction of mandibular skeletal deformities. However, neither in vitro nor numerical biomechanical assessments have evaluated the performance of fixation methods in HSOO. The aim of this study was to compare the biomechanical characteristics and stress distribution in bone and osteosynthesis fixations when using different designs and placing configurations, in order to determine a favourable plating method. We established two finite element models of HSOO with advancement (T1) and set-back (T2) movements of the mandible. Six different configurations of fixation of the ramus, progressively loaded by a constant force, were assessed for each model. The von Mises stress distribution in fixations and in bone, and bony segment displacement, were analysed. The lowest mechanical stresses and minimal gradient of displacement between the proximal and distal bony segments were detected in the combined one-third anterior- and posterior-positioned double mini-plate T1 and T2 models. This suggests that the appropriate method to correct mandibular deformities in HSOO surgery is with use of double mini-plates positioned in the anterior one-third and posterior one-third between the bony segments of the ramus.


Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 578 ◽  
Author(s):  
Bingrui Lv ◽  
Guilian Wang ◽  
Bin Li ◽  
Haibo Zhou ◽  
Yahui Hu

This paper describes the innovative design of a three-dimensional (3D) motion device based on a flexible mechanism, which is used primarily to produce accurate and fast micro-displacement. For example, the rapid contact and separation of the tool and the workpiece are realized by the operation of the 3D motion device in the machining process. This paper mainly concerns the device performance. A theoretical model for the static performance of the device was established using the matrix-based compliance modeling (MCM) method, and the static characteristics of the device were numerically simulated by finite element analysis (FEA). The Lagrangian principle and the finite element analysis method for device dynamics are used for prediction to obtain the natural frequency of the device. Under no-load conditions, the dynamic response performance and linear motion performance of the three directions were tested and analyzed with different input signals, and three sets of vibration trajectories were obtained. Finally, the scratching experiment was carried out. The detection of the workpiece reveals a pronounced periodic texture on the surface, which verifies that the vibration device can generate an ideal 3D vibration trajectory.


Sign in / Sign up

Export Citation Format

Share Document