Study on Denitrification and Phosphorus Removal Using an Integrated A/O Trickling Filter

2011 ◽  
Vol 183-185 ◽  
pp. 819-823
Author(s):  
Ying Kuang ◽  
Qi Rong Dong ◽  
He Li Wang

Two columns were experimented to compare trickling filter with integrated A/O trickling filter (IA/OTT) in this study. Denitrification and phosphorus removal were limited in traditional trickling filter. By designing anoxic section, adding carbon source and recycling outflow, denitrification was enhanced in IA/OTT. Meanwhile, chemical-biological methods were used to improve the phosphorus removal. It was shown that removal efficiency of CODcr, NH3-N, TN and TP were ideal. Compared with the traditional trickling filter, especially, the removal efficiency of TN and TP were respectively about 35% and 50% higher.

2015 ◽  
Vol 72 (4) ◽  
pp. 528-534 ◽  
Author(s):  
Yang Bai ◽  
Xie Quan ◽  
Yaobin Zhang ◽  
Shuo Chen

A University of Cape Town process coupled with integrated fixed biofilm and activated sludge system was modified by bypass flow strategy (BUCT–IFAS) to enhance nitrogen and phosphorus removal from the wastewater containing insufficient carbon source. This process was operated under different bypass flow ratios (λ were 0, 0.4, 0.5, 0.6 and 0.7, respectively) to investigate the effect of different operational modes on the nitrogen (N) and phosphorus (P) removal efficiency (λ = 0 was noted as common mode, other λ were noted as bypass flow mode), and optimizing the N and P removal efficiency by altering the λ. Results showed that the best total nitrogen (TN) and total phosphorus (TP) removal performances were achieved at λ of 0.6, the effluent TN and TP averaged 14.0 and 0.4 mg/L meeting discharge standard (TN < 15 mg/L, TP < 0.5 mg/L). Correspondingly, the TN and TP removal efficiencies were 70% and 94%, respectively, which were 24 and 41% higher than those at λ of 0. In addition, the denitrification and anoxic P-uptake rates were increased by 23% and 23%, respectively, compared with those at λ of 0. These results demonstrated that the BUCT–IFAS process was an attractive method for enhancing nitrogen and phosphorus removal from wastewater containing insufficient carbon source.


2014 ◽  
Vol 69 (10) ◽  
pp. 2023-2028 ◽  
Author(s):  
C. Y. Ki ◽  
K. H. Kwon ◽  
S. W. Kim ◽  
K. S. Min ◽  
T. U. Lee ◽  
...  

In summer, wastewater treatment plant total phosphorus (TP) removal efficiency is low in South Korea. The reason is because of high temperatures or significant fluctuation of inflow characteristics caused by frequent rainfall. Hence, this study tried to raise TP removal efficiency by injecting fixed external carbon sources in real sewage. Polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) compete to occupy microorganisms at high temperature. Propionate is known to restrain GAOs. Thus, acetate and propionate were chosen as the external carbon source in this study to find out the suitable volume and ratio of carbon source which ensured the dominance of PAOs. An external carbon source was supplied in the anaerobic reactor of the biological phosphorus removal process at high temperature (above 25 °C). TP removal efficiency was improved by injecting an external carbon source compared to that without an external carbon source. Also, it remained relatively stable when injecting an external carbon source, despite the variation in temperature. TP removal efficiency was the highest when injecting acetate and propionate in the proportion of 2:1 (total concentration as chemical oxygen demand (COD) is 12 mg/L in influent).


2007 ◽  
Vol 55 (1-2) ◽  
pp. 477-484 ◽  
Author(s):  
Y.W. Lee ◽  
Y.J. Kim ◽  
N.I. Chang ◽  
J.G. Lee ◽  
B.H. Lee

SBR process shows high nitrogen and phosphorus removal in countries where separated sewers are used. On the other hand, removal efficiency is low in countries where combined sewers are used though the same SBR is applied. This is because the organic concentration (as BOD), which is used as carbon source for denitrification, of combined sewers is much lower than that of separated sewers. Almost all sewers in Korea are combined, and their BOD is low by about 1/2 over the level needed for denitrification. In this study, a SBR process that can optimise organic usage by step feed and recycle is thus developed to increase the removal efficiency of nitrogen and phosphorus, and the results show that the removal rates of BOD, T-N and T-P are 95.4, 81.4 and 86.1%, respectively, though influent BOD is low.


2015 ◽  
Vol 71 (7) ◽  
pp. 1088-1096 ◽  
Author(s):  
B. Kim ◽  
M. Gautier ◽  
G. Olvera Palma ◽  
P. Molle ◽  
P. Michel ◽  
...  

The aim of this study was to characterize the efficiency of an intensified process of vertical flow constructed wetland having the following particularities: (i) biological pretreatment by trickling filter, (ii) FeCl3 injection for dissolved phosphorus removal and (iii) succession of different levels of redox conditions along the process line. A pilot-scale set-up designed to simulate a real-scale plant was constructed and operated using real wastewater. The influences of FeCl3 injection and water saturation level within the vertical flow constructed wetland stage on treatment performances were studied. Three different water saturation levels were compared by monitoring: suspended solids (SS), total phosphorus (TP), dissolved chemical oxygen demand (COD), ammonium, nitrate, phosphate, iron, and manganese. The results confirmed the good overall efficiency of the process and the contribution of the trickling filter pretreatment to COD removal and nitrification. The effects of water saturation level and FeCl3 injection on phosphorus removal were evaluated by analysis of the correlations between the variables. Under unsaturated conditions, good nitrification and no denitrification were observed. Under partly saturated conditions, both nitrification and denitrification were obtained, along with a good retention of SSs. Finally, under saturated conditions, the performance was decreased for almost all parameters.


2010 ◽  
Vol 113-116 ◽  
pp. 2201-2207 ◽  
Author(s):  
Jun Yin ◽  
Lei Wu ◽  
Ke Zhao ◽  
Yu Juan Yu

In this article, analysis the start-up of A2/O humic activated sludge system phosphorus removal efficiency and the characteristics of anaerobic phosphorus release, aerobic phosphorus uptake, sludge activity and their change in the Series Technologies process. The results show that A2/O humic activated sludge system phosphorus removal rate stabilized at 90.7% ~ 97.6%. Sludge activity except for anoxic zone 2 increased, along the process showed a gradual decrease trend.


2012 ◽  
Vol 518-523 ◽  
pp. 440-443
Author(s):  
Yu Jiao Luo ◽  
Ling Feng Qiu ◽  
Yi Ming Chen ◽  
Jian Zhang

Based on DPBs (Denitrifying Phosphorus-removing Bacteria) obtained from a lab-scale SBR, a quinone profile system had been established to analyze quinones in sludge samples. There existed a positive correlation between the contents of UQ-8 extracted from the sludge samples and the denitrifying and phosphorus removal efficiency of the treating system. With quinone profiles taken as a new important index, it was evidently feasible to determine the removal effect.


2018 ◽  
Vol 18 (2) ◽  
pp. 286 ◽  
Author(s):  
Aris Mukimin ◽  
Agus Purwanto

In general, wastewater treatment by physical, chemical and biological methods are only focused on TSS, BOD and COD removals that the effluent still contains anion pollutant as NO2- and S2-. Electrochemical technology is a proper method for those pollutants treatment due to its fast process, easy operation and minimum amount of sludge. Electrocatalytic reactor with 8 L capacity using Ti/RuIrO2 cylinder as anode and Fe plate as cathode was arranged and applied to treat anion pollutants. Hydraulic retention time (30, 60, 90 and 120 min), salt concentration (250, 500 and 750 mg/L) and voltage (4, 5, and 6 V) were chosen as operation variables and NO2- and S2- concentrations as parameter indicators. Nitrite removal efficiency reached 75 and 99.7% after 60 and 120 min of electrolysis, respectively, while sulfide could obtain higher efficiency, i.e., 97 and 99.9% after 60 and 90 min, respectively, at operation variables of potential of 5 V and salt of 500 mg/L. Removal process is dominated by indirect oxidation mechanism by HClO/ClO- oxidators generated at anode surface as intermediate products. The lifespan of electrode and electric consumption are two main factors of operation cost. Electric consumed was 0.452 kWh per 1 g nitrite removed.


2000 ◽  
Vol 42 (3-4) ◽  
pp. 89-94 ◽  
Author(s):  
H.Y. Chang ◽  
C.F. Ouyang

This investigation incorporated a stepwise feeding strategy into the biological process containing anaerobic/oxide/anoxic/oxide (AOAO) stages to enhance nitrogen and phosphorus removal efficiencies. Synthetic wastewater was fed into the experimental reactors during the anaerobic and anoxic stages and the substrates/nutrients were successfully consumed without recycling either nitrified effluent or external carbon source. An intrinsic sufficient carbon source developed during the anoxic stage and caused the NOx (NO2-N+NO3-N) concentration to be reduced from 11.85mg/l to 5.65mg/l. The total Kjeldahl nitrogen (TKN) removal rate was between 81.81%∼93.96% and the PO4-P removal ratio ranged from 93%∼100%. The substrate fed into the anaerobic with a Q1 flow rate and a Q2 into the anoxic reactor. The three difference experiments contained within this study produced Q1/Q2 that varied from 7/3, 8/2, and 9/1. The AOAO process saved nearly one-third of the energy compared with typical biological nutrient removal (BNR) system A2O processes.


Sign in / Sign up

Export Citation Format

Share Document