The Process Strategies of Mould High-Speed Machining and their Applications in the Environment of PowerMILL

2011 ◽  
Vol 188 ◽  
pp. 542-548 ◽  
Author(s):  
Jie Liu

High-speed machining requires the support of high intelligent CAM software as well as customized machining strategies and properly selected machining parameters. Only by combining the two can the advantage of high-speed machining be made full use of. Compared to ordinary NC cutting, high-speed machining has special requirements for process strategies, CAM system and tool path. A complete tool path includes approaching/retracting tool, moving tool and tool path. Based on the above principles, a mould part is successfully processed using the PowerMILL software at the high-speed machining centre of DMG-DMU40T. The maximum hardness of the mould part is HRC50. There’s a 30 degree corner in the cavity with a transition radius of 3mm. The whole process can be divided into three stages: rough, semi-finish and finish machining and each stage involves the selection of tool path, the selection of tool, the selection of cutting parameters (including spindle speed, feed speed and depth of cut), and the application of PowerMILL specific machining methods (such as Race-line machining, rest roughing, automatic trochoidal machining, 3D offset finishing and etc).

2011 ◽  
Vol 189-193 ◽  
pp. 3142-3147 ◽  
Author(s):  
Dong Qiang Gao ◽  
Zhong Yan Li ◽  
Zhi Yun Mao

A model of stress and temperature field is established on nickel-based alloy cutting by finite element modeling and dynamic numerical simulating, and then combining high-speed machining test and orthogonality analysis method, the influence law of cutting parameters on the cutting force and tool wear has been researched, and the tool life and cutting force prediction model based on cutting parameters has been obtained. Finally, by genetic algorithm method cutting parameters are selected reasonably and optimized. The result shows that the bonding wear is main tool wear, and the influence of cutting speed on cutting force is smaller than feed per tooth and axial depth of cut.


Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1570
Author(s):  
Dejan Lukic ◽  
Robert Cep ◽  
Jovan Vukman ◽  
Aco Antic ◽  
Mica Djurdjev ◽  
...  

Thin-walled parts made of aluminum alloy are mostly used as structural elements in the aerospace, automobile, and military industries due to good homogeneity, corrosion resistance, and the excellent ratio between mechanical properties and mass. Manufacturing of these parts is mainly performed by removing a large volume of material, so it is necessary to choose quality machining parameters that will achieve high productivity and satisfactory quality and accuracy of machining. Using the Taguchi methodology, an experimental plan is created and realized. Based on its results and comparative analysis of multi-criteria decision making (MCDM) methods, optimal levels of machining parameters in high-speed milling of thin-walled parts made of aluminum alloy Al7075 are selected. The varying input parameters are wall thickness, cutting parameters, and tool path strategies. The output parameters are productivity, surface quality, dimensional accuracy, the accuracy of forms and surface position, representing the optimization criteria. Selection of the optimal machining parameter levels and their ranking is realized using 14 MCDM methods. Afterward, the obtained results are compared using correlation analysis. At the output, integrative decisions were made on selecting the optimal level and rank of alternative levels of machining parameters.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 617 ◽  
Author(s):  
Ireneusz Zagórski ◽  
Jarosław Korpysa

Surface roughness is among the key indicators describing the quality of machined surfaces. Although it is an aggregate of several factors, the condition of the surface is largely determined by the type of tool and the operational parameters of machining. This study sought to examine the effect that particular machining parameters have on the quality of the surface. The investigated operation was the high-speed dry milling of a magnesium alloy with a polycrystalline diamond (PCD) cutting tool dedicated for light metal applications. Magnesium alloys have low density, and thus are commonly used in the aerospace or automotive industries. The state of the Mg surfaces was assessed using the 2D surface roughness parameters, measured on the lateral and the end face of the specimens, and the end-face 3D area roughness parameters. The description of the surfaces was complemented with the surface topography maps and the Abbott–Firestone curves of the specimens. Most 2D roughness parameters were to a limited extent affected by the changes in the cutting speed and the axial depth of cut, therefore, the results from the measurements were subjected to statistical analysis. From the data comparison, it emerged that PCD-tipped tools are resilient to changes in the cutting parameters and produce a high-quality surface finish.


2011 ◽  
Vol 264-265 ◽  
pp. 1193-1198
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari

Surface finish and dimensional accuracy is one of the most important requirements in machining process. Inconel 718 has been widely used in the aerospace industries. High speed machining (HSM) is capable of producing parts that require little or no grinding/lapping operations within the required machining tolerances. In this study small diameter tools are used to achieve high rpm to facilitate the application of low values of feed and depths of cut to investigate better surface finish in high speed machining of Inconel 718. This paper describes mathematically the effect of cutting parameters on Surface roughness in high speed end milling of Inconel 718. The mathematical model for the surface roughness has been developed in terms of cutting speed, feed rate, and axial depth of cut using design of experiments and the response surface methodology (RSM). Central composite design was employed in developing the surface roughness models in relation to primary cutting parameters. Machining were performed using CNC Vertical Machining Center (VMC) with a HES510 high speed machining attachment in which using a 4mm solid carbide fluted flat end mill tool. Wyko NT1100 optical profiler was used to measure the definite machined surface for obtaining the surface roughness data. The predicted results are in good agreement with the experimental one and hence the model can be efficiently used to predict the surface roughness value with in the specified cutting conditions limit.


2011 ◽  
Vol 337 ◽  
pp. 479-488
Author(s):  
Nurhaniza Mohamad ◽  
M.K.A.M. Arifin ◽  
Aidy Ali ◽  
Faizal Mustapha

The thin-web structure component is widely used in aviation and aerospace industries with the reason of light weight and high performance. However, the thin-web components are tending to deflect because of their poor rigidity and the effect of cutting force during cutting process. It is required to perform of high-speed machining that can remove the large number of material in a shorter time in order to allow machining of such structure. The performance of high-speed machining operation is restricted by the static and dynamic stiffness of the tool and part that can cause some problems such as regenerative chatter and ‘push-off’. The tool path plays an important function to avoid the problem occurs as it assists to reduce the workpiece vibration during machining. The optimization of tool path is done by determining the element removal sequences and the materials removal are implemented using milling cutter. The maximum deflection for each element removed is recorded in order to define the optimum solution of element removal sequences. The analysis shows that there are significant effects of workpiece stiffness with relation to the cutting parameters setting.


Author(s):  
N. M. Vaxevanidis ◽  
N. I. Galanis ◽  
G. P. Petropoulos ◽  
N. Karalis ◽  
P. Vasilakakos ◽  
...  

High-speed machining is widely applied for the processing of lightweight materials and also structural and tool steels. These materials are intensively used in the aerospace and the automotive industries. The advantages of high-speed machining lie not only in the speed of machining (lower costs and higher productivity) but also in attaining higher surface quality (prescribed surface roughness without surface defects). Based on this concept, in the present paper the high speed-dry turning of AISI O, (manganese-chromium-tungsten / W.-Nr. 1.2510) tool-steel specimens is reported. The influence of the main machining parameters i.e., cutting speed, feed rate and depth of cut on the resulted center-line average surface roughness (Ra) is examined. Types of wear phenomena occurred during the course of the present experimental study as well as tool wear patterns were also monitored.


2019 ◽  
Vol 943 ◽  
pp. 66-71
Author(s):  
Moola Mohan Reddy ◽  
Viviana Yong Chai Nie

This research work considered the high speed milling operation of Inconel 718 using a 4 flute solid carbide end mill tool without the use of coolant. Inconel 718 is a Nickel based Heat Resistance Super Alloy (HRSA) that is vastly used in the aerospace industries due to its excellent corrosion resistance and good mechanical properties. However, Inconel 718 is considered as a difficult-to-cut super alloy, which poses several problems when machining the material. The aim of this work is to investigate the effect and the influence of cutting parameters (feed rate, spindle speed, and depth of cut) on the quality of the machined surface as well as to evaluate the tool wear after machining. This evaluation of the surface roughness was done using a CNC milling machine at various parameters range for the values of feed rate (50-150 mm/min), spindle speed (2000-4000 RPM), and depth of cut (0.05-0.1 mm). The experiment was designed using Response Surface Analysis Method with Central Composite Design (CCD) to optimize the experimentation. The resulting tool wear and surface roughness after high speed machining were then analysed using ANOVA to determine the cutting parameters which is most affecting the surface roughness.


High Speed machining has captured popularity over last few years; Due to technological enhancements its implementation was successful. Because of progressive growth in machine tools and cutting too technology, HSM has proved itself an economic manufacturing process for manufacturing parts with high fidelity and surface quality. In recent times, with the progress of cutting tool technologies, HSM has also been used for machining alloy steels for preparing molds/dies employed in the manufacturing of a broad collection of automotive components, and also for plastic molding parts. This mechanization was effectively used with some advancement in machine tools, controllers and spindles. [1, 2]. The goal of this research is to develop mathematical models, in terms of the High-speed Milling operation input parameters. These models will assist engineers and technologists to achieve desirable machining conditions. This approach will assure the highest Depth of Cut, and assist in lowering machining time. Furthermore, it will reduce the numbers of experiments without any significant loss in the accuracy of the models developed.


Author(s):  
Lakhwinder Pal Singh ◽  
Jagtar Singh

In the field of mechanical engineering, engineers are always looking for ways to improve the properties of materials. Cryogenic treatment of tooling steels is a proven technology to increase wear resistance and extend intervals between component replacements. The main idea of this paper is to apply Taguchi method to optimize cutting parameters in turning operation using cryogenic treated (CT) and untreated (UT) high speed steel (HSS) tools, so that the scope of cryogenic treatment on HSS tool material may be presented for the benefit of medium and small scale industry using HSS tools for cutting operation. Taguchi L25 orthogonal array is employed to study the performance characteristics in turning operations of AISI 1020 steel bars using CT and UT HSS tools. The microstructure has been found more refined and uniformly distributed after cryogenic treatment of HSS tool. It has been observed that optimum machining parameters in both the cases (CT HSS and UT HSS tools) are higher cutting speed (49.9 to 75.7 m/min.), lower feed rate (0.15 mm/rev.), medium depth of cut (0.40 mm). Analysis of variance (ANOVA) indicates that the cutting speed is most significant parameter followed by feed rate in case of CT HSS tool and depth of cut in case of UT HSS tool.


Sign in / Sign up

Export Citation Format

Share Document