Study on Hot Deformation Behavior and Processing Maps of Cu-0.35Cr-0.15Zr Alloy

2011 ◽  
Vol 189-193 ◽  
pp. 1456-1464
Author(s):  
Jiao Yan Dai ◽  
Si Guo Mu ◽  
Yong Ru Wang

The hot deformation behavior of Cu-0.35Cr-0.15Zr (wt.%) alloy was investigated by hot compression tests using a Gleeble-1500D thermal simulator system. The tests were performed under the conditions of 700°С- 820°С temperature and 0.01-10s-1strain rate. The results show that the flow behavior of the studied alloy could be described by the hyperbolic sine constitutive equation, and an active energy of 597.53 kJ/mol was calculated. The processing maps were obtained and analyzed according to the dynamic materials model. The optimum processing parameters of hot deformation of this alloy in the range of this experiment can be attained by the maps. The hot deformation temperature was 800-820°C and the strain rate was 0.01-0.1s-1.The instability zones of flow behavior can also be recognized by the maps.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1743 ◽  
Author(s):  
Lei Luo ◽  
Zhiyi Liu ◽  
Song Bai ◽  
Juangang Zhao ◽  
Diping Zeng ◽  
...  

The hot deformation behavior of an Al-Zn-Mg-Cu alloy was investigated by hot compression test at deformation temperatures varying from 320 to 440 °C with strain rates ranging from 0.01 to 10 s−1. The results show that the Mg(Zn, Cu)2 particles as a result of the sufficient static precipitation prior to hot compression have an influence on flow softening. A constitutive model compensated with strain was developed from the experimental results, and it proved to be accurate for predicting the hot deformation behavior. Processing maps at various strains were established. The microstructural evolution demonstrates that the dominant dynamic softening mechanism stems from dynamic recovery (DRV) and partial dynamic recrystallization (DRX). The recrystallization mechanism is continuous dynamic recrystallization (CDRX). The microstructure observations are in good agreement with the results of processing maps. On account of the processing map and microstructural observation, the optimal hot processing parameters at a strain of 0.6 are at deformation temperature range of 390–440 °C and strain rate range of 0.010–0.316 s−1 with a peak efficiency of 0.390.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1940 ◽  
Author(s):  
Jianmei Kang ◽  
Yuhui Wang ◽  
Zhimeng Wang ◽  
Yiming Zhao ◽  
Yan Peng ◽  
...  

Hot deformation behavior of Fe-30Mn-0.11C steel was investigated. Hot compression tests were carried out at various temperatures ranging from 800 °C to 1200 °C and at different strain rates of 0.01 s−1 to 10 s−1. The constitutive equation based on peak stress was established. Hot processing maps at different strains and recrystallization diagrams were also established and analyzed. The results show that dynamic recrystallization easily occur at high deformation temperatures and low strain rates. Safe and unstable zones are determined at the true strain of 0.6 and 0.7, and the hot deformation process parameters of partial dynamic recrystallization of the tested steel are also obtained.


2012 ◽  
Vol 578 ◽  
pp. 202-205
Author(s):  
Guo Qing Lin

The hot deformation behavior of Zr-4 alloy was studied in the temperature range 650-900°C and strain rate range 0.005-50s-1 using processing maps. The processing maps revealed three domains: the first occurs in the temperature range 780-820°C and strain rate range 0.005-0.05s-1, and has a peak efficiency of 45% at 790°C and 0.005s-1; the mechanism is the dynamic recrystallization. The second occurs in the temperature range greater than 900°C and strain rate range 0.05-0.8s-1, and has a peak efficiency of 40% at 900°C and 0.5s-1, which are the domains of dynamic recovery. In addition, the instability zones of flow behavior can also be recognized by the maps in the temperature range 650-780°C and strain rate range 0.01-0.1s-1, which should be strictly avoided in the processing of the material. Zr-4 alloy is the material for pressure tube applications in nuclear reactors and has better strength and a lower rate of hydrogen uptake compared to other materials under similar service conditions.


2011 ◽  
Vol 117-119 ◽  
pp. 893-896
Author(s):  
Yong Liu ◽  
Yong Wei Sun ◽  
Bao Hong Tian ◽  
Jiang Feng ◽  
Yi Zhang

Hot deformation behavior of the 30%Mo/Cu-Al2O3 composite was investigated by hot compression tests on Gleeble-1500D thermal simulator in the temperature ranges of 450~750°C and the strain rate ranges of 0.01~5s-1, as the total strain is 0.7. The results show that the peak stress increases with the decreased deformation temperature or the increased strain rate. Based on the true stress-strain curves, the established constitutive equation represents the high-temperature flow behavior of the composite, and the calculated flow stresses are in good agreement with the high- temperature deformation experimental results.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 766
Author(s):  
Wang ◽  
Wang ◽  
Zhu ◽  
Xu ◽  
Cui ◽  
...  

The effect of V addition on the hot deformation behavior of AA5083 was investigated. Single axial compression tests were conducted on the cast and homogenized samples with strain rates ranging from 0.01 to 10 s−1 and deformation temperatures ranging from 300 to 450 °C. The results showed that the contents of V (0–0.10, in wt.%) do not change the grain size of alloy 5083 significantly in the as cast and homogenized conditions, but the formation of fine Al3V particles in the alloy with an addition of 0.05 wt.% V can increase the flow stress, and its activation energy is 10.0% higher than that of V-free alloy 5083. The processing maps show that the appropriate process domain for alloy 5083 with 0.05 wt.% V changes at different true strains. The mechanism for deformation softening is discussed as well.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2825 ◽  
Author(s):  
Yahu Song ◽  
Aiqin Wang ◽  
Douqin Ma ◽  
Jingpei Xie ◽  
Zhen Wang ◽  
...  

Hot deformation at elevated temperature is essential to densify particle-reinforced aluminum matrix composites (AMCs) and improve their performance. However, hot deformation behavior of the AMCs is sensitive to the variation of hot-processing parameters. In this paper, optimal processing parameters of dual-scale SiCp/A356 composites were determined to explore the control strategy of the microstructure. Hot-compression tests were conducted at temperatures ranging from 460 to 520 °C under strain rates from 0.01 to 5 s−1. Constitutive equation and processing maps were presented to determine the hot-processing parameters. Microstructure evolution of the dual-scale SiCp/A356 composites was analyzed. The strain rate of 0.62–5 s−1 and deformation temperature of 495–518 °C is suitable for the hot processing. The number of dynamic recrystallization (DRX) grains in the “safe” domains is larger and the dislocation density is lower compared to those of instability domains. DRX grains mainly occurred around SiC particles. The presence of SiC particles can promote effectively the DRX nucleation, which results in the dynamic softening mechanism of the dual-scale SiCp/A356 composites being dominated by DRX.


2013 ◽  
Vol 815 ◽  
pp. 37-42 ◽  
Author(s):  
Yu Juan Guo ◽  
Lei Deng ◽  
Xin Yun Wang ◽  
Jun Song Jin ◽  
Wen Wu Zhou

The hot deformation behavior of 7050aluminum alloy was investigated by hot compression tests in the temperature range of 573-773K and the strain rate ranging from 0.001s-1to 10 s-1.The flow curves showed that the flow stresses increase with the increase of strain rate or the decrease of temperature.In order to determine the optimal processing conditions, hot processing maps were established based on experimental data and Dynamic Materials Model. The processing maps indicate that instability occur at low temperature and high strain rate. The optimum hot working region is the domain in the temperature range of 673-723K and strain rate range of 0.001-0.01 s-1,where typical recrystallization was observed in the optical microstructures.


2011 ◽  
Vol 291-294 ◽  
pp. 640-644
Author(s):  
Qing Miao Guo ◽  
De Fu Li ◽  
Sheng Li Guo ◽  
Guo Ling Xie

Flow behavior and microstructures of GH625 superalloy were investigated by hot compression tests. Then the GH625 superalloy tube was hot extruded according to the hot deformation behavior, and the microstructures of different position of extruded tube was also analyzed. The results show that the actual deformation temperature of the specimen deformed at a strain rate of 10.0s-1 is higher than the preset temperature, resulting in a deformation thermal effect. Thus, the microstructure evolution of GH625 superalloy is controlled both by the strain rate and deformation temperature. It is also found that the GH625 superalloy tube can be successfully fabricated with a stable extrusion speed of 40 mm·s-1, extrusion ratio of 4.1 and preheating temperature of 1200°C. The microstructure of extruded tube was obviously fined due to the occurrence of dynamic recrystallization(DRX). Different degrees of DRX were observed in outer wall, center and inner wall of the tube, which is similar to that in the head, middle and tail of the tube. An extruded tube containing fully DRX grains can be obtained by cutting the head and tail of the tube, and machining a small amount of the inner wall.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1939
Author(s):  
Wentao Luo ◽  
Pengzhan Cai ◽  
Ziyong Hou ◽  
Yuhui Wang ◽  
Ling Zhang ◽  
...  

In the present work, the deformation behavior and processing maps of a low-carbon Fe-2 wt% Nb steel were studied by means of hot-compression tests at temperatures of 800–1150 °C and strain rates of 0.01–10 s−1. The hot-processing maps at different strains and corresponding microstructural evolution were constructed and discussed. The hot-deformation behaviors of two different phase regions, i.e., austenite + NbC dual-phase and ferrite + NbC dual-phase, were predicted by determining the constitutive equations using Arrhenius-type and Zener–Hollomon models. The results suggest that the hot-deformed microstructures of the material present a strong correlation with the processing parameters in the hot-processing maps. In addition, the optimum parameters based on the processing maps were obtained, and the instable and the safe domains during the hot deformation in the hot-processing maps provide solid theoretical guidance for industrial production.


2016 ◽  
Vol 35 (6) ◽  
pp. 599-605 ◽  
Author(s):  
Fuqiang Zhen ◽  
Jianlin Sun ◽  
Jian Li

AbstractThe flow behavior of 3104 aluminum alloy was investigated at temperatures ranging from 250°C to 500°C, and strain rates from 0.01 to 10 s−1 by isothermal compression tests. The true stress–strain curves were obtained from the measured load–stroke data and then modified by friction and temperature correction. The effects of temperature and strain rate on hot deformation behavior were represented by Zener–Hollomon parameter including Arrhenius term. Additionally, the influence of strain was incorporated considering the effect of strain on material constants. The derived constitution equation was applied to the finite element analysis of hot compression. The results show that the simulated force is consistent with the measured one. Consequently, the developed constitution equation is valid and feasible for numerical simulation in hot deformation process of 3104 alloy.


Sign in / Sign up

Export Citation Format

Share Document