Hypereutectic Al-Si-Mg In Situ Composite Prepared by Melt Superheating

2011 ◽  
Vol 194-196 ◽  
pp. 113-116 ◽  
Author(s):  
Zheng Liu ◽  
Min Xie

Mg2Si particle reinforced hypereutectic Al-Si-Mg alloy composite is prepared by melt superheating, and the effects of the main processing parameters, such as superheating temperature and holding time, on the microstructure of the composite are studied. The results indicate that it is feasible to prepare Mg2Si particle reinforced Al-18%Si-Mg alloy composite by melt superheating. The suitable preparing parameters of melt superheating on the alloy are obtained. When the superheating temperature is 860°C and holding time is 25 min, the average size of Mg2Si particle in the alloy will be reduced to about 11μm compared with 34μm without melt superheating.

2011 ◽  
Vol 52-54 ◽  
pp. 750-754 ◽  
Author(s):  
Zheng Liu ◽  
Min Xie ◽  
Xiao Mei Liu

Mg2Si particle reinforced in-situ Al-Si composite is prepared by melt superheating, and the microstructure and properties of the composite are researched. The results indicate that it is feasible that the melt superheating is applied to preparing Mg2Si particle reinforced in-situ Al-Si composite, and the suitable preparing parameters of melt superheating on the alloy are obtained. When the superheating temperature is 860°C and holding time is 25 min, the average size of Mg2Si particle in the alloy will be reduced to 11μm compared with 34μm without melt superheating, and the mechanical properties of the composite is obviously improved.


2017 ◽  
Vol 120 (3) ◽  
pp. 303-322
Author(s):  
D. Pienaar ◽  
B.M. Guy ◽  
C. Pienaar ◽  
K.S. Viljoen

Abstract Mineralogical and textural variability of ores from different sources commonly leads to processing inefficiencies, particularly when a processing plant is designed to treat ore from a single source (i.e. ore of a relatively uniform composition). The bulk of the Witwatersrand ore in the Klerksdorp goldfield, processed at the AngloGold Ashanti Great Noligwa treatment plant, is derived from the Vaal Reef (>90%), with a comparatively small contribution obtained from the Crystalkop Reef (or C-Reef). Despite the uneven contribution, it is of critical importance to ensure that the processing parameters are optimized for the treatment of both the Vaal and C-Reefs. This paper serves to document the results of a geometallurgical study of the C-Reef at the Great Noligwa gold mine in the Klerksdorp goldfield of South Africa, with the primary aim of assessing the suitability of the processing parameters that are in use at the Great Noligwa plant. The paper also draws comparisons between the C-Reef and the Vaal Reef A-facies (Vaal Reef) and attempts to explain minor differences in the recovery of gold and uranium from these two sources. Three samples of the C-Reef were collected in-situ from the underground operations at Great Noligwa mine for mineralogical analyses and metallurgical tests. Laboratory-scale leach tests for gold (cyanide) and uranium (sulphuric acid) were carried out using dissolution conditions similar to that in use at the Great Noligwa plant, followed by further diagnostic leaching in the case of gold. The gold in the ore was found to be readily leachable with recoveries ranging from 95% to 97% (as opposed to 89% to 93% for the Vaal Reef). Additional recoveries were achieved in the presence of excess cyanide (96% to 98%). The recovery of uranium varied between 72% and 76% (as opposed to 30% to 64% for the Vaal Reef), which is substantially higher than predicted, given the amount of brannerite in the ore, which is generally regarded as refractory. Thus, the higher uranium recoveries from the C-Reef imply that a proportion of the uranium was recovered by the partial dissolution of brannerite. As the Vaal Reef contain high amounts of chlorite (3% to 8%), which is an important acid consumer, it is considered likely that this could have reduced the effectiveness of the H2SO4 leach in the case of the ore of the Vaal Reef. Since the gold and uranium recoveries from the C-Reef were higher than the recoveries from the Vaal Reef, the results demonstrate that the processing parameters used for treatment of the Vaal Reef are equally suited to the treatment of the C-Reef. Moreover, small processing modifications, such as increased milling and leach retention times, may well increase the recovery of gold (particularly when e.g. coarse gold, or unexposed gold, is present).


Author(s):  
Domonkos Tolnai ◽  
Sarkis Gavras ◽  
Fabian Wilde ◽  
Jörg U. Hammel ◽  
Stefan Bruns

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 528
Author(s):  
Chunyue Yin ◽  
Zhehao Lu ◽  
Xianshun Wei ◽  
Biao Yan ◽  
Pengfei Yan

The objective of the study is to investigate the corresponding microstructure and mechanical properties, especially bending strength, of the hypereutectic Al-Si alloy processed by selective laser melting (SLM). Almost dense Al-22Si-0.2Fe-0.1Cu-Re alloy is fabricated from a novel type of powder materials with optimized processing parameters. Phase analysis of such Al-22Si-0.2Fe-0.1Cu-Re alloy shows that the solubility of Si in Al matrix increases significantly. The fine microstructure can be observed, divided into three zones: fine zones, coarse zones, and heat-affected zones (HAZs). Fine zones are directly generated from the liquid phase with the characteristic of petaloid structures and bulk Al-Si eutectic. Due to the fine microstructure induced by the rapid cooling rate of SLM, the primary silicon presents a minimum average size of ~0.5 μm in fine zones, significantly smaller than that in the conventional produced hypereutectic samples. Moreover, the maximum value of Vickers hardness reaches ~170 HV0.2, and bending strength increases to 687.70 MPa for the as-built Al-22Si-0.2Fe-0.1Cu-Re alloys parts, which is much higher than that of cast counterparts. The formation mechanism of this fine microstructure and the enhancement reasons of bending strength are also discussed.


Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1951
Author(s):  
Yi Di Boon ◽  
Sunil Chandrakant Joshi ◽  
Somen Kumar Bhudolia

Fiber reinforced thermoplastic composites are gaining popularity in many industries due to their short consolidation cycles, among other advantages over thermoset-based composites. Computer aided manufacturing processes, such as filament winding and automated fiber placement, have been used conventionally for thermoset-based composites. The automated processes can be adapted to include in situ consolidation for the fabrication of thermoplastic-based composites. In this paper, a detailed literature review on the factors affecting the in situ consolidation process is presented. The models used to study the various aspects of the in situ consolidation process are discussed. The processing parameters that gave good consolidation results in past studies are compiled and highlighted. The parameters can be used as reference points for future studies to further improve the automated manufacturing processes.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4863
Author(s):  
Victor Dyomin ◽  
Alexandra Davydova ◽  
Igor Polovtsev ◽  
Alexey Olshukov ◽  
Nikolay Kirillov ◽  
...  

The paper presents an underwater holographic sensor to study marine particles—a miniDHC digital holographic camera, which may be used as part of a hydrobiological probe for accompanying (background) measurements. The results of field measurements of plankton are given and interpreted, their verification is performed. Errors of measurements and classification of plankton particles are estimated. MiniDHC allows measurement of the following set of background data, which is confirmed by field tests: plankton concentration, average size and size dispersion of individuals, particle size distribution, including on major taxa, as well as water turbidity and suspension statistics. Version of constructing measuring systems based on modern carriers of operational oceanography for the purpose of ecological diagnostics of the world ocean using autochthonous plankton are discussed. The results of field measurements of plankton using miniDHC as part of a hydrobiological probe are presented and interpreted, and their verification is carried out. The results of comparing the data on the concentration of individual taxa obtained using miniDHC with the data obtained by the traditional method using plankton catching with a net showed a difference of no more than 23%. The article also contains recommendations for expanding the potential of miniDHC, its purpose indicators, and improving metrological characteristics.


2011 ◽  
Vol 686 ◽  
pp. 378-381
Author(s):  
Si Rong Yu ◽  
Zhi Qiu Huang ◽  
Jia An Liu

Novel AZ91D Mg alloy/fly-ash cenospheres (AZ91D/FAC) composites were fabricated by melt stir technique. The thermodynamic analyses of the interfacial reactions, the microstructure observation, and the phase analyses of the AZ91D/FAC composites were investigated. The results showed that the cenospheres were almost filled with Mg alloy matrix. In-situ MgO and Mg2Si phases were formed in Mg alloy matrix and near the interfaces between the cenospheres and Mg alloy matrix. Through the thermodynamic calculation, it can be found that the standard free enthalpy changes of these interfacial reactions are all negative at the temperature of Mg alloy melt preparation in this work, and these reactions can occur.


2011 ◽  
Vol 40 (5) ◽  
pp. 1190-1194
Author(s):  
Wenbin Su ◽  
Chunlei Wang ◽  
Hongchao Wang ◽  
Jian Liu ◽  
Peng Zheng ◽  
...  

2014 ◽  
Vol 81 ◽  
pp. 4-7 ◽  
Author(s):  
S. Wang ◽  
F.M. Guo ◽  
D.Q. Jiang ◽  
Y. Liu ◽  
L.S. Cui

Sign in / Sign up

Export Citation Format

Share Document