Study on Thermal Contact Resistance for Heat Transfer of High Power LED Packaging

2011 ◽  
Vol 199-200 ◽  
pp. 1477-1481
Author(s):  
Guo Tao Ren ◽  
Kai Lin Pan ◽  
Wei Tao Zhu ◽  
Jiao Pin Wang ◽  
Jing Huang

Thermal contact resistance is one of key technologies for heat transfer of high power light emitting diodes (LED) packaging. In this paper, based on the resistance network model of LED packaging, a 3-D finite element simulation model (FEM) is established and thermal transient testing experiments are also performed by Thermal Transient tester (T3Ster). Experiment date indicates thermal contact resistance for 48% of the total thermal resistance. The thermal interface material (TIM) layer of high power LED packaging is studied to analysis thermal contact resistance which impacts on thermal performance of LED packaging. The total thermal resistance and the thermal resistance of TIM layer are separately calculated from simulation and experiment. To the resistance of TIM layer, the result of experiment is only a 1% error compared to the result of FEM simulation. Therefore, The FEM simulation and experiment are mutually validated. In order to thoroughly study on thermal contact resistance, based on the principle of structure function, thermal resistance of three different types of TIM layer between metal core printed circuit board (MCPCB) and aluminum heat sink are measured and compared. Experiment results indicate that the quality of interface affects the thermal contact resistance to a great extent.

Nanomaterials ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1699
Author(s):  
Sriharsha Sudhindra ◽  
Fariborz Kargar ◽  
Alexander A. Balandin

We report on experimental investigation of thermal contact resistance, RC, of the noncuring graphene thermal interface materials with the surfaces characterized by different degree of roughness, Sq. It is found that the thermal contact resistance depends on the graphene loading, ξ, non-monotonically, achieving its minimum at the loading fraction of ξ ~15 wt %. Decreasing the surface roughness by Sq~1 μm results in approximately the factor of ×2 decrease in the thermal contact resistance for this graphene loading. The obtained dependences of the thermal conductivity, KTIM, thermal contact resistance, RC, and the total thermal resistance of the thermal interface material layer on ξ and Sq can be utilized for optimization of the loading fraction of graphene for specific materials and roughness of the connecting surfaces. Our results are important for the thermal management of high-power-density electronics implemented with diamond and other wide-band-gap semiconductors.


2019 ◽  
Vol 23 (3 Part B) ◽  
pp. 1837-1846
Author(s):  
Mhamdi El ◽  
Elalami Semma

The lattice Boltzmann method and the particle image model are adopted to study a heat transfer problem with thermal contact resistance. In this paper, a new study involving an inclined interface of contact between two media is introduced in order to evaluate a 2-D heat transfer in the steady regime. A case of study and numerical results are provided to support this configuration. The obtained results show the effect of the thermal contact resistance on the heat transfer, as well as the temperature distribution on the two contacting media.


Author(s):  
Hyeun-Su Kim ◽  
Hsien-Hsin Liao ◽  
Byeong-hee Lee ◽  
Thomas W. Kenny

A zero power passive temperature regulator has been studied and designed to maintain electric chip operating temperature using a variable thermal resistor. Apart from the passive temperature regulator design, we also present active variable thermal resistors using electrostatic force to actuate the device. Test samples were fabricated to verify these two designs and we observed the temperature change of a heated chip due to thermal resistance changes. This study estimated and measured the thermal contact resistance and the force required to remove it.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1353 ◽  
Author(s):  
Dongxu Han ◽  
Kai Yue ◽  
Liang Cheng ◽  
Xuri Yang ◽  
Xinxin Zhang

A novel method involving the effect of thermal contact resistance (TCR) was proposed using a plane heat source smaller than the measured samples for improving measurement accuracy of the simultaneous determination of in-plane and cross-plane thermal conductivities and the volumetric heat capacity of anisotropic materials. The heat transfer during the measurement process was mathematically modeled in a 3D Cartesian coordinate system. The temperature distribution inside the sample was analytically derived by applying Laplace transform and the variables separation method. A multiparameter estimation algorithm was developed on the basis of the sensitivity analysis of the parameters to simultaneously estimate the measured parameters. The correctness of the algorithm was verified by performing simulation experiments. The thermophysical parameters of insulating materials were experimentally measured using the proposed method at different temperatures and pressures. Fiber glass and ceramic insulation materials were tested at room temperature. The measured results showed that the relative error was 1.6% less than the standard value and proved the accuracy of the proposed method. The TCRs measured at different pressures were compared with those obtained using the steady-state method, and the maximum deviation was 8.5%. The thermal conductivity obtained with the contact thermal resistance was smaller than that without the thermal resistance. The measurement results for the anisotropic silica aerogels at different temperatures and pressures revealed that the thermal conductivity and thermal contact conductance increased as temperature and pressure increased.


Atomic Energy ◽  
1962 ◽  
Vol 11 (3) ◽  
pp. 910-913
Author(s):  
O. P. Astakhov ◽  
V. I. Petrov ◽  
O. S. Fedynskii

2015 ◽  
Vol 821-823 ◽  
pp. 452-455 ◽  
Author(s):  
Zsolt Toth Pal ◽  
Ya Fan Zhang ◽  
Ilja Belov ◽  
Hans Peter Nee ◽  
Mietek Bakowski

– Thermal contact resistances between a silver metallized SiC chip and a direct bonded copper (DBC) substrate have been measured in a heat transfer experiment. A novel experimental method to separate thermal contact resistances in multilayer heat transfer path has been demonstrated. The experimental results have been compared with analytical calculations and also with 3D computational fluid dynamics (CFD) simulation results. A simplified CFD model of the experimental setup has been validated. The results show significant pressure dependence of the thermal contact resistance but also a pressure independent part.


Sign in / Sign up

Export Citation Format

Share Document