Experiment of Carbonization for Wet-Sieving Fine Aggregate Concrete Made from Ordinary Concrete

2011 ◽  
Vol 201-203 ◽  
pp. 2887-2890
Author(s):  
Shun Bo Zhao ◽  
Na Liang ◽  
Xiao Lu Ma ◽  
Su Yang

The research in this paper is part of wet-sieving concrete technique for building thermal insulated reinforced concrete composite wall. The carbonized depths of fine aggregate concrete and ordinary concrete were measured by the carbonization test method. Based on the test, in standard test environmental conditions, the carbonization changes of fine aggregate concrete rely on its inherent combination changes. The lower carbonized depth takes place in fine aggregate concrete comparing with ordinary concrete, which is resulted from the increasing cement content and the reduction of grain size of coarse aggregate in fine aggregate concrete. Finally, the carbonization of fine aggregate concrete is evaluated according to the relative specification, and the reasonable service life of fine aggregate concrete is precast.

2010 ◽  
Vol 168-170 ◽  
pp. 2200-2203 ◽  
Author(s):  
Shun Bo Zhao ◽  
Na Liang ◽  
Li Xin Liu ◽  
Li Sun ◽  
Su Yang

The validity of the wet-sieving concrete technique for building the reinforced composite concrete wall are demonstrated in the paper. The fine aggregate concrete made by ordinary concrete passing the sieve with square mash of 15 mm was cast for the surface layer, the recomposed concrete mixed by the residual concrete stayed on the sieve with the ordinary concrete was cast for the reinforced concrete structural wall. The mechanical properties such as the cubic and compressive strengths, the elastic modulus and the splitting and flexural tensile strengths of the fine aggregate concrete, the recomposed concrete and the ordinary concrete were tested and analyzed. The results show that the elastic modulus and splitting tensile strength of fine aggregate concrete reduce in some extent compared with that of ordinary concrete, the mechanical properties of recomposed concrete are almost the same as that of ordinary concrete.


2013 ◽  
Vol 438-439 ◽  
pp. 314-317
Author(s):  
Feng Lan Li ◽  
Hai Na Chen ◽  
Xue Zhen Feng ◽  
Su Yang

Tests were carried out to study the durability of fine aggregate concrete and composite concrete simultaneously provided by the wet-sieving technique for the thermal insulation composite wall as building envelops. The workability of every concrete satisfied the basic requirement of cast quality. The composition analyses of concrete showed that compared with the ordinary concrete, the volume percent of coarse aggregate was increased and the volume percent of cement mortar was decreased due to that the residual coarse aggregate stayed on the sieve was blended with ordinary concrete, which increased the resistances of composite concrete to chloride penetration, water penetration and carbonization. Meanwhile, the resistances of fine aggregate concrete to chloride penetration, water penetration and carbonization were reduced due to the obvious increase of the volume percent of cement mortar.


2011 ◽  
Vol 197-198 ◽  
pp. 915-918
Author(s):  
Shun Bo Zhao ◽  
Shan Zhao ◽  
Su Yang ◽  
Xiao Lu Ma ◽  
Li Sun

The research is part of wet-sieving concrete technique for building thermal insulated reinforced concrete composite wall. The fine aggregate concrete is made from ordinary concrete passing sieve with square mash of 15 mm for casting surface concrete layer of the wall. Tests were conducted to determine drying shrinkage and autogenous shrinkage of fine aggregate concrete and ordinary concrete. On the basis of test results, the variations of these shrinkages are analyzed. It shows that the shrinkage is almost resulted from drying shrinkage; the drying shrinkages of fine aggregate concrete and ordinary concrete increase rapidly in the early ages before 14 d, the former takes place with large value 1.61 times of the later; the increments of drying shrinkage of fine aggregate concrete and ordinary concrete are almost the same after 14 d. The drying shrinkage of fine aggregate concrete is about 1.23 times of ordinary concrete. The formulas are proposed for calculating the drying shrinkage of fine aggregate concrete and ordinary concrete.


2011 ◽  
Vol 201-203 ◽  
pp. 2883-2886
Author(s):  
Xiao Ke Li ◽  
Shan Zhao ◽  
Li Sun ◽  
Shun Bo Zhao

The research is part of wet-sieving concrete technique for building thermal insulated reinforced concrete composite wall. The fine aggregate concrete is made from ordinary concrete passing sieve with square mash of 15 mm for casting surface concrete layer of the wall, the recomposed concrete is made of residual concrete stayed on sieve and ordinary concrete for casting reinforced concrete structural wall. The impermeability of fine aggregate concrete and recomposed concrete are measured by water permeation method and chloride-ion permeation method, the relative permeability and chloride-ion diffusion coefficients of concrete are determined. Based on the test, the effects of the changes of aggregate series, sand ratio and cement paste on the impermeability of concrete are analyzed.


2017 ◽  
Vol 898 ◽  
pp. 2046-2049 ◽  
Author(s):  
Gong Bing Yue ◽  
Qiu Yi Li ◽  
Jian Lin Luo ◽  
Yuan Xin Guo

Compared with natural aggregate, the content of hardening cement in recycled aggregate is larger, which leads that the water absorption of recycled aggregate is larger and its performance such as robustness is poorer. And the engineering field pays much attention to the problem of the recycled fine aggregate which can be used in the durability requirements of recycled concrete or not. Using the method of fast freezing and thawing the influence of quality and replacement ratio of recycled coarse aggregate on the frost resistance of recycled concrete was researched basing on ordinary concrete frost resistance performance. The results showed that, in terms of the frost resistance capacity, the order is in: ordinary concrete>high-quality recycled coarse aggregate concrete>normal quality recycled coarse aggregate concrete. After 250 freeze-thaw cycles, the mass loss rate of general quality recycled coarse aggregate concrete is 5%, relative dynamic elastic modulus is 60% when replace rate was 100%.


2013 ◽  
Vol 671-674 ◽  
pp. 1800-1804 ◽  
Author(s):  
Jin Kun Sun ◽  
Shuang Hua Huang ◽  
Wei Chen ◽  
Bing Li ◽  
Jing Liu

In view of the present situation that the preparation of complex high titanium heavy slag concrete (hereinafter referred to as CHTHSC) by using all coarse aggregate, fine aggregate and ground admixture made of high titanium heavy slag, is in need of experiments and studies in detail, this paper, based on the verification and analysis of structural stability of complex high titanium heavy slag and through tests of preparing CHTHSC from C10 to C55, compares CHTHSC with ordinary concrete and high titanium heavy slag concrete (hereinafter referred to as HTHSC) from three aspects of mixture amount of coarse aggregate, fine aggregate and composite powder. Results show that the compression resistance, axial compression resistance and cleavage strength of CHTHSC are higher than those of the other two kinds of concrete. For CHTHSC, it is appropriate to have composite powder take the place of 15%-20% of cement content.


2019 ◽  
Vol 11 (6) ◽  
pp. 751-767
Author(s):  
Raja Rajeshwari B. ◽  
Sivakumar M.V.N.

Purpose Fracture properties depend on the type of material, method of testing and type of specimen. The purpose of this paper is to evaluate fracture properties by adopting a stable test method, i.e., wedge split test. Design/methodology/approach Coarse aggregate of three different sizes (20 mm, 16 mm and 12.5 mm), three ratios of coarse aggregate, fine aggregate (CA:FA) (50:50, 45:55, 40:60), presence of steel fibers, and specimens without and with guide notch were chosen as parameters of the study. Findings Load-crack mouth opening displacement curves indicate that for both fibrous and non-fibrous mixes, higher volume of aggregate and higher size of coarse aggregate have high fracture energy. Originality/value For all volumes of coarse aggregate, it was noticed that specimens with 12.5 mm aggregate size achieved highest peak load and abrupt drop post-peak. The decrease in coarseness of internal structure of concrete (λ) resulted in the increase of fracture energy.


Author(s):  
Prithvi S. Kandhal ◽  
Gary L. Hoffman

Since a considerable amount of steel slag is produced in the southwestern part of Pennsylvania around Pittsburgh, where natural fine aggregate sources are limited, an evaluation was undertaken to determine the feasibility of using “cured” steel slag fine aggregate in hot-mix asphalt (HMA) mixtures. The objectives of this work were to (1) correlate fine aggregate expansions to the “parent” coarse aggregate expansions, (2) determine properties of dense-graded Pennsylvania ID-2 wearing coarse mixtures made with various sources of steel slag and crushed limestone fine aggregate, and (3) recommend appropriate specifications and test criteria for implementing the use of steel slag fine aggregate, if justifiable. Expansive characteristics of the steel slag aggregates were determined by Pennsylvania Test Method 130. HMA mixtures made with steel slag aggregates and limestone aggregate (control) were subjected to hot-water conditioning and Lottman freeze-and-thaw conditioning to determine potential problems, such as swell and moisture-induced damage. An excellent correlation existed between the average total expansion of the fine aggregate fraction and that of the “parent” coarse aggregate. No significant problems with swell and moisture-induced damage were noted in HMA mixtures containing steel slag fine aggregate and limestone coarse aggregate. Specifications and test criteria were recommended for the use of steel slag fine aggregate in HMA mixtures.


Sign in / Sign up

Export Citation Format

Share Document