3D Geological Modeling in Chang109 Block of Changchunling Oilfield

2011 ◽  
Vol 204-210 ◽  
pp. 1891-1894
Author(s):  
Jiang Tao Yu ◽  
Jun Xie ◽  
Ning Ning Meng ◽  
Peng Lin

With the improving of reservoir development level, reservoir geologic research urgently need some new and practical technical methods to describe reservoir more accurately and meticulous. The three-dimensional geological modeling exactly is one of the main aspects to resolve the problem. Take the Chang109 block of Changchunling oilfield for an example. Using Petrel, which is multi-disciplinary and synthetical software for researching reservoir and to establish a 3D geological model as the outstanding characteristic, to build the reservoir model displaying geological information system. That, including the structure model, the sedimentary facies model and the property model, will provide reliable basis potential finding and well placement.

2013 ◽  
Vol 734-737 ◽  
pp. 488-492
Author(s):  
Chen Qiang Dong ◽  
Fang Ding ◽  
Wei Wei Ren

Haqian wellblock has a very good prospect in Dzungaria Basin, as it developed many faults and some formations are truncated, the development situation of it is very complicated, in this paper, we applied 3D geological modeling method which is one of the most important technology methods in describing the underground development situation, to illustrate the intricate structure. This geological model involved computer modeling and visualization of geological fault in 3D, the type of data of geological faults based on geological exploration is analyzed, after the fault model and horizon model are built, a whole structure model is finally set up.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Gang Mei

Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.


2021 ◽  
Author(s):  
Daniel Pflieger ◽  
Miguel de la Varga Hormazabal ◽  
Simon Virgo ◽  
Jan von Harten ◽  
Florian Wellmann

<p>Three dimensional modeling is a rapidly developing field in geological scientific and commercial applications. The combination of modeling and uncertainty analysis aides in understanding and quantitatively assessing complex subsurface structures. In recent years, many methods have been developed to facilitate this combined analysis, usually either through an extension of existing desktop applications or by making use of Jupyter notebooks as frontends. We evaluate here if modern web browser technology, linked to high-performance cloud services, can also be used for these types of analyses.</p><p>For this purpose, we developed a web application as proof-of-concept with the aim to visualize three dimensional geological models provided by a server. The implementation enables the modification of input parameters with assigned probability distributions. This step enables the generation of randomized realizations of models and the quantification and visualization of propagated uncertainties. The software is implemented using HTML Web Components on the client side and a Python server, providing a RESTful API to the open source geological modeling tool “GemPy”. Encapsulating the main components in custom elements, in combination with a minimalistic state management approach and a template parser, allows for high modularity. This enables rapid extendibility of the functionality of the components depending on the user’s needs and an easy integration into existing web platforms.</p><p>Our implementation shows that it is possible to extend and simplify modeling processes by creating an expandable web-based platform for probabilistic modeling, with the aim to increase the usability and to facilitate access to this functionality for a wide range of scientific analyses. The ability to compute models rapidly and with any given device in a web browser makes it flexible to use, and more accessible to a broader range of users.</p>


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 638
Author(s):  
Zhenzhou Zhu ◽  
Xiaodong Lei ◽  
Nengxiong Xu ◽  
Dongyue Shao ◽  
Xingyu Jiang ◽  
...  

With the increasing demand for energy and the growing concern for atmospheric pollution in Beijing, China, the exploitation and utilization of geothermal resources are becoming more desirable. The study combined three-dimensional geological modeling with geothermal field analysis to make clear the potential and distribution of geothermal resources in the northwest of the Beijing plain, which could provide a scientific basis for rational utilization in the study area. Based on the analysis of the geological data and geothermal conditions, we created a 3D geological model of the study area, and then added isothermal surfaces into the model and analyzed the heat flow to enhance the understanding of the present geothermal field. After that, the volumes of different temperature intervals of heat reservoirs were calculated accurately and automatically by the integration of the model and the isothermal surfaces. Finally, the geothermal reserves were calculated by the improved volumetric method, and the distribution of resources was analyzed comprehensively. The results showed that, in the study area, the heat flow values ranged from 49 to 99 mW m−2, and the average elevations of 25 °C, 40 °C, and 60 °C isothermal surfaces were at −415 m, −1282 m, and −2613 m, respectively. The geothermal reserves were 5.42 × 1019 J and the volume of the heat reservoir was 4.88 × 1011 m3. The geothermal resources of the study area had good potential and could support local green development.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Cheng An ◽  
Peng Zhang ◽  
Amanveer Wesley ◽  
Gaetan Bardy ◽  
Kevin Hall ◽  
...  

Abstract A novel workflow to optimize well placement using geomechanical constraints is introduced to maximize production performance, reduce excessive simulation runs, and minimize drilling constraints by considering the local stress field and the petrophysical properties in a given reservoir. A case study is presented for optimization of horizontal well placement in the Monterey Formation of Miocene Age in California. First, a three-dimensional reservoir model of formation pressure, in situ stresses, petrophysical and rock properties were built from available petrophysical and well log data. Second, numerical modeling using material point method (MPM) was applied to generate the differential stress field, taking into consideration a three-dimensional natural fracture network in the reservoir model. Third, an optimization algorithm which incorporates petrophysical properties, natural fracture distribution, differential stresses, and mechanical stability was used to identify the best candidate locations for well placement. Finally, flow simulations were conducted to segregate each candidate location where both natural and hydraulic fractures were considered. Statistical methods identify optimal well positions in areas with low differential stress, high porosity, and high permeability. Several candidate locations for well placement were selected and flow simulations were conducted. A comparison of the production performance between the best candidates and other randomly selected well configurations indicates that the workflow can effectively recognize scenarios of optimum well placement. The proposed workflow provides practical insight on well placement optimization by reducing the number of required reservoir simulation runs and maximizing the hydrocarbon recovery.


2012 ◽  
Vol 249-250 ◽  
pp. 563-566 ◽  
Author(s):  
Hong Bing Zhao ◽  
Xue Li ◽  
Feng Hua Wang ◽  
Yong Bei Cui

Three-dimensional geological modeling techniques, developed from 1980s, is a new geological technology used to make reservoir fine description and geological characterization with the combination of seismic, geological and reservoir exploration and development based on geostatistics. Three-dimensional geological modeling can achieve the quantitative characterization of the reservoir and heterogeneity of various scales. So far, it has been the most important content of reservoir description, what’s more, three-dimensional structure modeling can improve the accuracy and reliability of fine reservoir description through the establishment of three-dimensional reservoir model, the quantitative distribution of three-dimensional reservoir parameters and geometry.


2013 ◽  
Vol 336-338 ◽  
pp. 1416-1421
Author(s):  
Wei He ◽  
Wen Li Wu

To achieve 3D grid models which have a non-uniform size and varying properties, we proposed the algorithm of grid subdivision and encryption by human-computer interaction. This algorithm was the technology based on 3D geological modeling, and achieving process has following three steps. Firstly, we converted many 2D cross sections to 3D space, and reconstructed 3D vector models using the algorithm of optimal path suture, and set the property of abnormal body and surrounding rock. Then, achieving 3D grids subdivided according to the relationship between the center of 3D grid and 3D vector models, the properties of 3D grids were determined. Finally, we encrypted grids in the survey area and expansion area, and modified the properties. The results show that the algorithm can realize the conversion from 3D vector models to 3D grid models, and this process is reliable and efficient.


2017 ◽  
pp. 36-40
Author(s):  
A. I. Tseplyaeva

The represented method allows to create three-dimensional geological models of collectors of paleozoic basement, which provides a significant economic effect in the subsequent deposit explorations for typical russian companies - subsoil users, having a limited amount of data. In geological modeling of the collectors of paleozoic basement, the application of the method of dual porosity (double medium) is most relevant. The created approach allows to refine the geological model with an increase of geological reserves by 30 % in reservoirs with natural fracturing.


2013 ◽  
Vol 421 ◽  
pp. 834-837 ◽  
Author(s):  
Guo Wei Hou ◽  
Xue Li ◽  
Jin Laing Zhang ◽  
Long Long Liu

3D geological modeling and visualization are the key technique issues to implement the plan of Digital Earth". However, 3D physical property model varies depending on the technology of 3D geological modeling which will bring about great changes in the reflection of reservoir property. In this paper, Some super voxel models, mathematical models of fault and geometrical models of fold have been contrived so as to show the space geometric configuration of the complicated geologic structures. And the architecture for integrated physical property modeling is established; Based on the physical property model, the spatial distribution and plane spread of reservor property is displayed detailedly with Sequential Gaussian simulation. By integrating geological database, sedimentary facies maps with those property models, geologists will be able to capture the partial characteristics and whole structure embodied in the geological data in a direct-viewing, figurative and accurate manner.


2020 ◽  
Vol 9 (6) ◽  
pp. 389
Author(s):  
Xinyu Zhang ◽  
Yi Zhang ◽  
Lirui Xu ◽  
Junqiang Zhang ◽  
Yiping Tian ◽  
...  

Borehole log is important data for urban geological 3D modeling. Most of the current borehole logs are stored in a papery form. The construction of a smart city puts forward requirements for the automatic and intelligent 3D modeling of urban geology. However, it is difficult to extract the information from the papery borehole log quickly. What is more, it is unreliable to rely entirely on automated algorithms for modeling without artificial participation, but there is no effective way to integrate geological knowledge into 3D geological modeling currently. Therefore, it is necessary to research how to use existing papery borehole logs efficiently. To overcome the above obstacles, we designed a method that combines structural analysis and layout understanding to extract information from the borehole log. Then, the knowledge-driven three-dimensional geological modeling is proposed based on dynamic profiles. With these methods, the papery borehole log can be converted into structured data which can be used for data analysis directly, and geological knowledge can be integrated into the process of 3D geological modeling. The 3D geological modeling of Xinyang City based on a papery borehole log has been taken as an example to verify the feasibility of the method.


Sign in / Sign up

Export Citation Format

Share Document