Three Dimensional Fine Structure Modeling of Haqian1 Wellblock, in Northern Dzungaria Basin, China

2013 ◽  
Vol 734-737 ◽  
pp. 488-492
Author(s):  
Chen Qiang Dong ◽  
Fang Ding ◽  
Wei Wei Ren

Haqian wellblock has a very good prospect in Dzungaria Basin, as it developed many faults and some formations are truncated, the development situation of it is very complicated, in this paper, we applied 3D geological modeling method which is one of the most important technology methods in describing the underground development situation, to illustrate the intricate structure. This geological model involved computer modeling and visualization of geological fault in 3D, the type of data of geological faults based on geological exploration is analyzed, after the fault model and horizon model are built, a whole structure model is finally set up.

2017 ◽  
pp. 36-40
Author(s):  
A. I. Tseplyaeva

The represented method allows to create three-dimensional geological models of collectors of paleozoic basement, which provides a significant economic effect in the subsequent deposit explorations for typical russian companies - subsoil users, having a limited amount of data. In geological modeling of the collectors of paleozoic basement, the application of the method of dual porosity (double medium) is most relevant. The created approach allows to refine the geological model with an increase of geological reserves by 30 % in reservoirs with natural fracturing.


2011 ◽  
Vol 204-210 ◽  
pp. 1891-1894
Author(s):  
Jiang Tao Yu ◽  
Jun Xie ◽  
Ning Ning Meng ◽  
Peng Lin

With the improving of reservoir development level, reservoir geologic research urgently need some new and practical technical methods to describe reservoir more accurately and meticulous. The three-dimensional geological modeling exactly is one of the main aspects to resolve the problem. Take the Chang109 block of Changchunling oilfield for an example. Using Petrel, which is multi-disciplinary and synthetical software for researching reservoir and to establish a 3D geological model as the outstanding characteristic, to build the reservoir model displaying geological information system. That, including the structure model, the sedimentary facies model and the property model, will provide reliable basis potential finding and well placement.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Gang Mei

Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.


2011 ◽  
Vol 255-260 ◽  
pp. 3584-3588
Author(s):  
Zhi Yuan Hou ◽  
Bin Tian ◽  
Ze Yun Xiao

Since there are some characteristics such as correlation, repeatability and integrity during the gravity dam design process, an automatic gravity dam assistant design system was established by adopting C sharp programming language, Visual Studio Development Suite as well as material mechanics and Technology of Parametric Drawing. The System includes four modules: 3D geological modeling, gravity dam structure modeling, dam sections analysis and database management. These modules realized different specialty cooperation and offered many-side analysis such as: 3D finite element analysis, stability analysis, stress analysis, section optimization and report export.


2021 ◽  
Author(s):  
Daniel Pflieger ◽  
Miguel de la Varga Hormazabal ◽  
Simon Virgo ◽  
Jan von Harten ◽  
Florian Wellmann

<p>Three dimensional modeling is a rapidly developing field in geological scientific and commercial applications. The combination of modeling and uncertainty analysis aides in understanding and quantitatively assessing complex subsurface structures. In recent years, many methods have been developed to facilitate this combined analysis, usually either through an extension of existing desktop applications or by making use of Jupyter notebooks as frontends. We evaluate here if modern web browser technology, linked to high-performance cloud services, can also be used for these types of analyses.</p><p>For this purpose, we developed a web application as proof-of-concept with the aim to visualize three dimensional geological models provided by a server. The implementation enables the modification of input parameters with assigned probability distributions. This step enables the generation of randomized realizations of models and the quantification and visualization of propagated uncertainties. The software is implemented using HTML Web Components on the client side and a Python server, providing a RESTful API to the open source geological modeling tool “GemPy”. Encapsulating the main components in custom elements, in combination with a minimalistic state management approach and a template parser, allows for high modularity. This enables rapid extendibility of the functionality of the components depending on the user’s needs and an easy integration into existing web platforms.</p><p>Our implementation shows that it is possible to extend and simplify modeling processes by creating an expandable web-based platform for probabilistic modeling, with the aim to increase the usability and to facilitate access to this functionality for a wide range of scientific analyses. The ability to compute models rapidly and with any given device in a web browser makes it flexible to use, and more accessible to a broader range of users.</p>


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 638
Author(s):  
Zhenzhou Zhu ◽  
Xiaodong Lei ◽  
Nengxiong Xu ◽  
Dongyue Shao ◽  
Xingyu Jiang ◽  
...  

With the increasing demand for energy and the growing concern for atmospheric pollution in Beijing, China, the exploitation and utilization of geothermal resources are becoming more desirable. The study combined three-dimensional geological modeling with geothermal field analysis to make clear the potential and distribution of geothermal resources in the northwest of the Beijing plain, which could provide a scientific basis for rational utilization in the study area. Based on the analysis of the geological data and geothermal conditions, we created a 3D geological model of the study area, and then added isothermal surfaces into the model and analyzed the heat flow to enhance the understanding of the present geothermal field. After that, the volumes of different temperature intervals of heat reservoirs were calculated accurately and automatically by the integration of the model and the isothermal surfaces. Finally, the geothermal reserves were calculated by the improved volumetric method, and the distribution of resources was analyzed comprehensively. The results showed that, in the study area, the heat flow values ranged from 49 to 99 mW m−2, and the average elevations of 25 °C, 40 °C, and 60 °C isothermal surfaces were at −415 m, −1282 m, and −2613 m, respectively. The geothermal reserves were 5.42 × 1019 J and the volume of the heat reservoir was 4.88 × 1011 m3. The geothermal resources of the study area had good potential and could support local green development.


2015 ◽  
Vol 733 ◽  
pp. 178-181
Author(s):  
Peng Yan Wang ◽  
Yao Hua Li ◽  
Ze Yu Li

Geological structure model is the foundation of the sedimentary faces modeling, property modeling and digital simulation, which includes the horizon model and fault model. Fault model which is accorded with underground conditions plays an important role in the structure modeling, so it would be an important work to build the fault model perfectly with the seismic and logging data. This paper take the fault modeling of C84-6 well area in Chaoyanggou field as an example, building the fault model by four methods of ‘Projection of polygon’ ‘Correction of depth domain seismic body’ ‘Checking by overlooking’ ‘Correction of breakpoints’ by the software of Petrel. The fault model which is built by integrating logging and seismic data can be the skeleton to build the final geological structure model, and those methods mentioned in this paper has been applied to the modeling work in some adjacent areas at present.


2012 ◽  
Vol 249-250 ◽  
pp. 563-566 ◽  
Author(s):  
Hong Bing Zhao ◽  
Xue Li ◽  
Feng Hua Wang ◽  
Yong Bei Cui

Three-dimensional geological modeling techniques, developed from 1980s, is a new geological technology used to make reservoir fine description and geological characterization with the combination of seismic, geological and reservoir exploration and development based on geostatistics. Three-dimensional geological modeling can achieve the quantitative characterization of the reservoir and heterogeneity of various scales. So far, it has been the most important content of reservoir description, what’s more, three-dimensional structure modeling can improve the accuracy and reliability of fine reservoir description through the establishment of three-dimensional reservoir model, the quantitative distribution of three-dimensional reservoir parameters and geometry.


2014 ◽  
Vol 556-562 ◽  
pp. 4116-4119
Author(s):  
Jing Rui Xu ◽  
Xue Li

With the fast development of computer technology and 3D visualization technology, geological modleing has made great progress in recent years. The aim of geological modeling is to realize the integrated and quantitative prediction of underground geological bodies, and provide researchers with 3D display of geological characteristics, consequently. So, 3D geological modeling has become an important tool for people to carry out related studies in every oilfield of in China. This paper analyzes the complexity and diversity of geological bodies and geological structure, because these are the main factors that control the distribution and spread of sandboied and reservoir parameters. Based on these previous analysis, the 3D geological model is established with proper modeling method, and a certain 3D visualization of geological bodies are realized by through-well profiles and fence models. Also, the 3D geological model can provide a reliable scientific tools for decision-making for geological researchers.


2013 ◽  
Vol 5 (3) ◽  
Author(s):  
Xue Li ◽  
Jinliang Zhang ◽  
Yong Yuan ◽  
Cunlei Li ◽  
Ningning Meng

AbstractThe M1 block is a typically complex fault-block oilfield, whose recovery has reached 30.5% through the twenty years waterflooding development. Remaining oil scatters very widely and the production between layers is in a high degree. However, many problems have been exposed at the same time which hinder improvement of the recovery rate and sustainable development of the reservoir. Hence, it is important to carry out basic geological research and form a comprehensive understanding of reservoir properties. However, few such studies have been conducted in China. In this study, work related to basic geological research was conducted based on high-resolution sequence stratigraphy, seismic interpretation technology and 3D visual geological modeling, and significant results were achieved. Three sequence orders and three types of interfacies in the stratigraphic architecture of M1 block were identified through seismic sections, logging curve characteristics and entropy spectrum analysis. Thirty-two short-term sequence cycles (fifth order), eight mid-term sequence cycles (fourth order) and two long-term sequence cycles (third order) were identified, followed by the establishment of a high-resolution isochronous stratigraphic correlation framework. Finally, a regional 3D geological model was established on the basis of these preliminary studies. The integrated 3D geological model is a valuable tool for reflecting geological bodies accurately, and it can accurately represent and describe reservoir heterogeneity.


Sign in / Sign up

Export Citation Format

Share Document