Synthesis of Nano-Hydroxyapatite Surface-Grafting Poly(L-Lactide) under Microwave Irradiation

2011 ◽  
Vol 204-210 ◽  
pp. 1929-1933 ◽  
Author(s):  
Bing Hong Luo ◽  
Chung En Hsu ◽  
Jing Yang ◽  
Jian Hao Zhao ◽  
Chang Ren Zhou

Nano-hydroxyapatite (n-HAP) surface-grafting poly(L-lactide) (g-HAP) was synthesized by ring-opening polymerization ofL-lactide (L-LA) using stannous octoate as initiator andn-HAP as co-initiator under microwave irradiation. An optimal reaction condition was obtained as follows: temperature of 140 °C, irradiation time of 45 min and microwave power of 50 W. The products were characterized by FTIR, TGA, x-ray scattering and particle size analysis. Results showed that the feeding ratio ofnn-HAP:nL-LAhad a significant influence on the grafting percentage ofg-HAP. With increasing thenn-HAP:nL-LAfeeding ratio from 1:50 to 1:400, the grafting percentage ofg-HAP increased correspondingly from 14.91% to 35.88%. Theg-HAP particles showed a smaller size than that of pristinen-HAP, suggesting that the grafted poly(L-lactide) segment facilitated to prevent theg-HAP particles from aggregating.

Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 232
Author(s):  
Pedro J. Sánchez-Soto ◽  
Eduardo Garzón ◽  
Luis Pérez-Villarejo ◽  
George N. Angelopoulos ◽  
Dolores Eliche-Quesada

In this work, an examination of mining wastes of an albite deposit in south Spain was carried out using X-ray Fluorescence (XRF), X-ray diffraction (XRD), particle size analysis, thermo-dilatometry and Differential Thermal Analysis (DTA) and Thermogravimetric (TG) analysis, followed by the determination of the main ceramic properties. The albite content in two selected samples was high (65–40 wt. %), accompanied by quartz (25–40 wt. %) and other minor minerals identified by XRD, mainly kaolinite, in agreement with the high content of silica and alumina determined by XRF. The content of Na2O was in the range 5.44–3.09 wt. %, being associated with albite. The iron content was very low (<0.75 wt. %). The kaolinite content in the waste was estimated from ~8 to 32 wt. %. The particle size analysis indicated values of 11–31 wt. % of particles <63 µm. The ceramic properties of fired samples (1000–1350 °C) showed progressive shrinkage by the thermal effect, with water absorption and open porosity almost at zero at 1200–1250 °C. At 1200 °C, the bulk density reached a maximum value of 2.38 g/cm3. An abrupt change in the phase evolution by XRD was found from 1150 to 1200 °C, with the disappearance of albite by melting in accordance with the predictions of the phase diagram SiO2-Al2O3-Na2O and the system albite-quartz. These fired materials contained as main crystalline phases quartz and mullite. Quartz was present in the raw samples and mullite was formed by decomposition of kaolinite. The observation of mullite forming needle-shape crystals was revealed by Scanning Electron Microscopy (SEM). The formation of fully densified and vitrified mullite materials by firing treatments was demonstrated.


2010 ◽  
Vol 61 (5) ◽  
pp. 1235-1243 ◽  
Author(s):  
Y. F. He ◽  
F. R. Li ◽  
R. M. Wang ◽  
F. Y. Li ◽  
Y. Wang ◽  
...  

Xanthate was successfully grafted onto bentonite by a relatively simple solution reaction. The obtained xanthated bentonite (XBent) was characterized by FT-IR spectrophotometer, thermogravimetric analysis (TG), particle size analysis, x-ray diffraction (XRD) and scanning electron microscopy (SEM). XBent acting as a type of environmentally friendly adsorbent was applied to remove lead ions from aqueous solutions. The optimum conditions were as follows: [Pb2 + ] = 500 mg L−1, [XBent] = 2 g L−1, pH = 5.0; oscillating 60 min under 200 rpm at 25°C. The removal rate of lead was up to 99.9%. It was found that the lead(II) ions—XBent adsorption isotherm model fitted well to the Freundlich isotherm. The adsorption mechanism was also investigated by SEM and XRD, which concluded that lead ions were complexed or chelated with XBent. XBent appears to have potential to be used later in water treatment as a type of inorganic polymer reagent.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1413
Author(s):  
Rafał Panek ◽  
Jarosław Madej ◽  
Lidia Bandura ◽  
Grzegorz Słowik

Nowadays, using fly ash for zeolites production has become a well-known strategy aimed on sustainable development. During zeolite synthesis in a hydrothermal conversion large amount of post-reaction solution is generated. In this work, the solution was used as a substrate for Na-A and Na-X zeolites synthesis at laboratory and technical scale. Obtained materials were characterized using particle size analysis, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), transmission electron microscopy (TEM), Fourier transformed infrared spectroscopy (FTIR), and nitrogen adsorption/desorption isotherm. Produced zeolites revealed high purity (>98%) and monomineral zeolitic phase composition. The SiO2 content was in the range 39–42% and 40–38%, whereas Al2O3 content was 23–22% and 25–26% for Na-X and Na-A, respectively. TEM and BET analyses revealed Na-X zeolite pores were almost identical to commercial 13X with SBET in the range 671–734 m2/g. FTIR indicated slight differences between materials obtained at laboratory and technical scale in Si-O-(Si/Al) bridges of the zeolitic skeleton. The results showed good replicability of the laboratory process in the larger scale. The proposed method allows for waste solution reusability with a view to highly pure zeolites production in line with circular economy assumptions.


2012 ◽  
Vol 727-728 ◽  
pp. 1164-1169 ◽  
Author(s):  
Mônica Beatriz Thürmer ◽  
Rafaela Silveira Vieira ◽  
Juliana Machado Fernandes ◽  
Wilbur Trajano Guerin Coelho ◽  
Luis Alberto Santos

Calcium phosphate cements have bioactivity and osteoconductivity and can be molded and replace portions of bone tissue. The aim of this work was to study the obtainment of α-tricalcium phosphate, the main phase of calcium phosphate cement, by wet reaction from calcium nitrate and phosphoric acid. There are no reports about α-tricalcium phosphate obtained by this method. Two routes of chemical precipitation were evaluated and the use of two calcinations temperatures to obtain the phase of cement. The influence of calcination temperature on the mechanical properties of cement was evaluated. Cement samples were characterized by particle size analysis, X-ray diffraction, mechanical strength and scanning electron microscopy. The results demonstrate the strong influence of synthesis route on the crystalline phases of cement and the influence of concentration of reactants on the product of the reaction, as well as, on the mechanical properties of cement.


2021 ◽  
Author(s):  
Maame Croffie ◽  
Paul N. Williams ◽  
Owen Fenton ◽  
Anna Fenelon ◽  
Karen Daly

&lt;p&gt;Soil texture is an essential factor for effective land management in agricultural production. Knowledge of soil texture and particle size at field scale can aid with on-going soil management decisions. Standard soil physical and gravimetric methods for particle size analysis are time-consuming and X-ray fluorescence spectrometry (XRF) provides a rapid and cost-effective alternative. The objective of this study was to explore the use of XRF as a predictor for particle size. An extensive archive of Irish soils with particle size and soil texture data was used to select samples for XRF analysis. Regression and correlation analyses on XRF determined results showed that the relationship between Rb and % clay varied with soil type and was dependent on the parent material. There was a strong relationship (R &gt; 0.62, R&lt;sup&gt;2&lt;/sup&gt;&gt;0.30, p&lt;0.05) between Rb and clay for soils originating from bedrock such as limestones and slate. Contrastingly, no significant relationship (R&lt;0.03, R&lt;sup&gt;2&lt;/sup&gt;=0.00, p&gt;0.05) exists between Rb and % clay for soils originating from granite and gneiss. Furthermore, there was a significant negative correlation (p&lt;0.05) between Rb and % sand. The XRF is a useful technique for rough screening of particle size distribution in soils originating from certain parent materials. Thus, this may contribute to the rapid prediction of soil texture based on knowledge of the particle size distribution.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document