Microstructure and Wear Resistance of Cu-TiC Composites Fabricated by Mechanical Alloying and Spark Plasma Sintering

2011 ◽  
Vol 213 ◽  
pp. 524-528 ◽  
Author(s):  
Jian Zhuang ◽  
Yong Bing Liu ◽  
Zhan Yi Cao ◽  
Yue Ying Li

The microstructure and wear behavior of Cu-TiC composite which prepared by spark plasma sintering (SPS) and mechanical alloying (MA) were discussed in this paper. X-ray diffraction patterns and scanning electronic microscopy (SEM) images indicate that TiC were formed during sintering process. The pin-on-disc wear test was carried. Confocal scanning laser microscope (CFSLM) images indicate that mechanical mixed layer appeared on the worn surface the mechanical mixed layer broken up when normal load reached 200N. The composites displayed excellent wear resistance with 2.38×10−5 mm3/Nm specific wear loss.

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 920 ◽  
Author(s):  
Saleh Wohaibi ◽  
Abdul Mohammed ◽  
Tahar Laoui ◽  
Abbas Hakeem ◽  
Akeem Adesina ◽  
...  

The present study investigates the high temperature tribological performance of spark plasma sintered, nano- and micron-sized tungsten carbide (WC) bonded by 9 wt.% cobalt (Co). The composites were fabricated using a two-step procedure of mixing followed by spark plasma sintering (SPS). Ball-on-disc wear tests were conducted at a normal load of 30 N, linear speed of 0.1 m/s under dry conditions and at three different temperatures (room temperature, 300 °C and 600 °C). Field emission scanning electron microscopy (FESEM), optical profilometry and energy dispersive X-ray (EDS) spectroscopy were used to analyze the surface morphology and the wear track area. At room temperature, it was observed that the nano-sized WC composites exhibited better wear resistance than the micron-sized WC composites. The wear resistance of the nano-sized samples declined significantly relative to that of the micron-sized samples with an increase in temperature. This decline in performance was attributed to the higher surface area of nano-sized WC particles, which underwent rapid oxidation at elevated temperatures, resulting in poor wear resistance. The wear rate observed at 600 °C for the micron-sized WC composites was 75% lower than that of the nano-sized cemented carbide. Oxidative wear was observed to be the predominant wear mechanism for both cemented carbide samples at elevated temperatures.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 800
Author(s):  
Pavel Novák ◽  
Zdeněk Barták ◽  
Kateřina Nová ◽  
Filip Průša

This paper describes the structure and properties of an innovative Fe-Al-Si alloy with a reduced amount of silicon (5 wt. %) in order to avoid excessive brittleness. The alloy was produced by a combination of mechanical alloying and spark plasma sintering. Nickel and titanium were independently tested as the alloying elements for this alloy. It was found that wear resistance, which reached values comparable with tool steels, could be further improved by the addition of nickel. Nickel also improved the high-temperature oxidation behavior, because it lowers the liability of the oxide layers to spallation. Both nickel and titanium increased the hardness of the alloy. Titanium negatively influenced oxidation behavior and wear resistance because of the presence of titanium dioxide in the oxide layer and the brittle silicides that caused chipping wear, respectively.


2014 ◽  
Vol 1052 ◽  
pp. 115-119
Author(s):  
Xin Le Cheng ◽  
Bao Hong Tian

By using a SPS-30 spark plasma sintering pressing sintering furnace, the Cu-50Mo-WC composites were prepared with four different WC content by spark plasma sintering method (SPS). The wear behavior of the Cu-50Mo-WC composite pin against the QCr0. 5 bronze disc was examined on a pin-on-disc tribotester. The worn surface morphologies of the composite were observed by a scanning electron microscope (SEM). The wear mechanism was investigated briefly.The results show that the WC particles improve the hardness and wear resistance of the composites. The main wear mechanism of the composites is of adhesive wear and abrasive wear. When addition of 1% WC content, the optimal comprehensive properties of the composite is obtained.


2015 ◽  
Vol 830-831 ◽  
pp. 67-70
Author(s):  
K.M. Nambiraj ◽  
R. Rajeswari ◽  
S. Madhavan

This paper reports the development of a cutting tool insert prepared by consolidation, followed by Spark Plasma Sintering (SPS) of TiB2 (Titanium diboride) particles processed through an in-situ reaction and AlN (Aluminium nitride) manufactured by the direct nitridation process. In-situ TiB2 particles, formed during reaction of KBF4 (Potassium tetra Fluoroborate) and K2TiF6 (Potassium Fuorotitanate) with Al alloy, are obtained by dissolving the Al-TiB2 composite in an acidic medium. The extracted TiB2 (30%) particles are blended with AlN and Al2O3 in the weight ratio of 67%-3% and sintered (SPS) at 1440°C with a compaction load of 50 MPa and a total sintering time of 8 minutes. The sintering is carried out in vacuum. The sintered ceramic displays high hardness of nearly 15.5 GPa and extraordinary toughness of 7MPa.m1/2. The inserts are manufactured according to SNGN (Square Double-sided ceramic) configuration. To study its performance, machining is carried out on hardened steel (EN 24). The developed AlN based inserts show increased wear resistance and provide good surface finish when compared with commercially available ceramic inserts (70%Al2O3+30%TiC). Cutting forces are recorded with a Kistler® dynamometer to correlate them with the tool wear. Methods of preparation and comparison of wear resistance and surface finish of the machined material with those pertaining to commercial ceramic inserts are also presented. SEM images are displayed, which support the results.


Sign in / Sign up

Export Citation Format

Share Document