Prediction for Air-Bending Springback Radius of Sheet Metal Using Back Propagation Neural Network and Micro Genetic Algorithm

2011 ◽  
Vol 219-220 ◽  
pp. 1174-1177
Author(s):  
Ze Min Fu ◽  
Guang Ming Liu

Springback radius is a very important factor to influence the quality of sheet metal air-bending forming. Accurate prediction of springback radius is essential for the design of air-bending tools. In this paper, a three-layer back propagation neural network (BPNN), integrated with micro genetic algorithm (MGA), is proposed to solve the problem of springback radius. A micro genetic algorithm is used for minimizing the error between the predictive value and the experimental one. Based on air-bending experiment, the prediction model of springback radius is developed by using the integrated neural network. The results show that more accurate prediction of springback radius can be obtained with the MGA-BPNN model. It can be taken as a valuable tool for air-bending forming of sheet metal.

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1379 ◽  
Author(s):  
Zhuang Yang ◽  
Qu Zhou ◽  
Xiaodong Wu ◽  
Zhongyong Zhao ◽  
Chao Tang ◽  
...  

The water content in oil is closely related to the deterioration performance of an insulation system, and accurate prediction of water content in oil is important for the stability and security level of power systems. A novel method of measuring water content in transformer oil using multi frequency ultrasonic with a back propagation neural network that was optimized by principal component analysis and genetic algorithm (PCA-GA-BPNN), is reported in this paper. 160 oil samples of different water content were investigated using the multi frequency ultrasonic detection technology. Then the multi frequency ultrasonic data were preprocessed using principal component analysis (PCA), which was implemented to obtain main principal components containing 95% of original information. After that, a genetic algorithm (GA) was incorporated to optimize the parameters for a back propagation neural network (BPNN), including the weight and threshold. Finally, the BPNN model with the optimized parameters was trained with a random 150 sets of pretreatment data, and the generalization ability of the model was tested with the remaining 10 sets. The mean squared error of the test sets was 8.65 × 10−5, with a correlation coefficient of 0.98. Results show that the developed PCA-GA-BPNN model is robust and enables accurate prediction of a water content in transformer oil using multi frequency ultrasonic technology.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 583
Author(s):  
Wenlin Nie ◽  
Jianjun Fang ◽  
Shuming Wen ◽  
Qicheng Feng ◽  
Yanbing He ◽  
...  

Copper oxide ore is an important copper ore resource. For a certain copper oxide ore in Yunnan, China, experiments have been conducted on the grinding fineness, collector dosage, sodium sulfide dosage, inhibitor dosage, and activator dosage. The results showed that, by controlling the above conditions, better sulfide flotation indices of copper oxide ore are obtained. Additionally, ammonium bicarbonate and ethylenediamine phosphate enhanced the sulfide flotation of copper oxide ore, whereas the combined activator agent exhibited a better performance than either individual activator. In addition, to optimize all of the conditions in a more reasonable way, a combination of the 5-11-1 genetic algorithm and back propagation neural network (GA–BPNN) was used to set up a mathematical optimization model. The results of the back propagation neural network (BPNN) model showed that the R2 value was 0.998, and the results were in accordance with the requirement model. After 4169 iterations, the error in the objective function was 0.001, which met the convergence requirements for the final solution. The genetic algorithm (GA) model was used to optimize the BPNN model. After 100 generations, a copper recovery of 87.62% was achieved under the following conditions: grinding fineness of 0.074 mm, which accounted for 91.7%; collector agent dosage of 487.7 g/t; sodium sulfide dosage of 1157.2 g/t; combined activator agent dosage of 537.8 g/t; inhibitor dosage of 298.9 g/t. Using the combined amine and ammonium salt to enhance the sulfide activation efficiency, a GA–BPNN model was used to achieve the goal of global optimizations of copper oxide ore and good flotation indices were obtained.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1082
Author(s):  
Fanqiang Meng

Risk and security are two symmetric descriptions of the uncertainty of the same system. If the risk early warning is carried out in time, the security capability of the system can be improved. A safety early warning model based on fuzzy c-means clustering (FCM) and back-propagation neural network was established, and a genetic algorithm was introduced to optimize the connection weight and other properties of the neural network, so as to construct the safety early warning system of coal mining face. The system was applied in a coal face in Shandong, China, with 46 groups of data as samples. Firstly, the original data were clustered by FCM, the input space was fuzzy divided, and the samples were clustered into three categories. Then, the clustered data was used as the input of the neural network for training and prediction. The back-propagation neural network and genetic algorithm optimization neural network were trained and verified many times. The results show that the early warning model can realize the prediction and early warning of the safety condition of the working face, and the performance of the neural network model optimized by genetic algorithm is better than the traditional back-propagation artificial neural network model, with higher prediction accuracy and convergence speed. The established early warning model and method can provide reference and basis for the prediction, early warning and risk management of coal mine production safety, so as to discover the hidden danger of working face accident as soon as possible, eliminate the hidden danger in time and reduce the accident probability to the maximum extent.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Haisheng Song ◽  
Ruisong Xu ◽  
Yueliang Ma ◽  
Gaofei Li

The back propagation neural network (BPNN) algorithm can be used as a supervised classification in the processing of remote sensing image classification. But its defects are obvious: falling into the local minimum value easily, slow convergence speed, and being difficult to determine intermediate hidden layer nodes. Genetic algorithm (GA) has the advantages of global optimization and being not easy to fall into local minimum value, but it has the disadvantage of poor local searching capability. This paper uses GA to generate the initial structure of BPNN. Then, the stable, efficient, and fast BP classification network is gotten through making fine adjustments on the improved BP algorithm. Finally, we use the hybrid algorithm to execute classification on remote sensing image and compare it with the improved BP algorithm and traditional maximum likelihood classification (MLC) algorithm. Results of experiments show that the hybrid algorithm outperforms improved BP algorithm and MLC algorithm.


2015 ◽  
Vol 785 ◽  
pp. 14-18 ◽  
Author(s):  
Badar ul Islam ◽  
Zuhairi Baharudin ◽  
Perumal Nallagownden

Although, Back Propagation Neural Network are frequently implemented to forecast short-term electricity load, however, this training algorithm is criticized for its slow and improper convergence and poor generalization. There is a great need to explore the techniques that can overcome the above mentioned limitations to improve the forecast accuracy. In this paper, an improved BP neural network training algorithm is proposed that hybridizes simulated annealing and genetic algorithm (SA-GA). This hybrid approach leads to the integration of powerful local search capability of simulated annealing and near accurate global search performance of genetic algorithm. The proposed technique has shown better results in terms of load forecast accuracy and faster convergence. ISO New England data for the period of five years is employed to develop a case study that validates the efficacy of the proposed technique.


Author(s):  
Bo Huang

This study analyzed three prediction models: ID model, GM (1,1) model and back-propagation neural network (BPNN) model. Firstly, the principles of the three models were introduced, and the prediction methods of the three models were analyzed. Then, taking enterprise A as an example, the demand for human resources was predicted, and the prediction results of the three models were compared. The results showed that the maximum and minimum errors were 240 people and 12 people respectively in the prediction results of the ID3 model and 64 people and 37 people respectively in the prediction results of the GM (1, 1) model; the errors of the BPNN model were smaller than ten people, and the minimum value of the BPNN model was three people, which was in good agreement with the actual value. The prediction of the human resource demand of enterprise A in the future five years with the BPNN model suggested that the demand for employees would growing rapidly. The results show that the BPNN model has better reliability and can be popularized and applied in practice.


2016 ◽  
Vol 7 (1) ◽  
pp. 33-49 ◽  
Author(s):  
Suruchi Chawla

In this paper novel method is proposed using hybrid of Genetic Algorithm (GA) and Back Propagation (BP) Artificial Neural Network (ANN) for learning of classification of user queries to cluster for effective Personalized Web Search. The GA- BP ANN has been trained offline for classification of input queries and user query session profiles to a specific cluster based on clustered web query sessions. Thus during online web search, trained GA –BP ANN is used for classification of new user queries to a cluster and the selected cluster is used for web page recommendations. This process of classification and recommendations continues till search is effectively personalized to the information need of the user. Experiment was conducted on the data set of web user query sessions to evaluate the effectiveness of Personalized Web Search using GA optimized BP ANN and the results confirm the improvement in the precision of search results.


Sign in / Sign up

Export Citation Format

Share Document