The Analysis for the Environmental Impact of Natural Gas Leakage and Diffusion into the Atmosphere

2011 ◽  
Vol 225-226 ◽  
pp. 656-659
Author(s):  
Qing Min Hou ◽  
Wen Ling Jiao ◽  
Ping Hua Zou

In this paper, we investigate the leakage and diffusion characteristics of natural gas. As results show, when the natural gas leaks from the pipeline, it jet into the atmosphere in the form of positively buoyant jets. As a result, a hazardous area can appear at an altitude of 150m from the ground. Furthermore, the natural gas has a low concentration near the ground, this means the natural gas is less harmful to human body. In addition, the wind should be considered in the transport of leaked natural gas.

2020 ◽  
Vol 213 ◽  
pp. 02031
Author(s):  
Liwen Sun ◽  
Guangpeng Li

The safety accident of indoor natural gas supply system is the process of natural gas leakage and diffusion, most of which are turbulent processes affected by many factors. When the natural gas leaks into the indoor confined space, it will mix with the air to form a mixture. When the oxygen in the natural gas and the air reaches a certain concentration range, combustion or explosion will occur when it meets the ignition source. This paper mainly introduces the influencing factors and calculation methods of the explosion limit of natural gas, and analyzes the calculation methods of the explosion limit of multi-component combustible mixed gas.


2021 ◽  
Author(s):  
Dulu Appah ◽  
Victor Aimikhe ◽  
Wilfred Okologume

Abstract The undetected gas leak, also referred to as fugitive gas emissions, are produced from natural gas infrastructure during operational activities. If not monitored, this undetected gas leakage can lead to undesirable economic loss of natural gas from installed infrastructures and are often accompanied by toxic air pollutants that typically pose safety and public health concerns. The efficient quantification of gas leaks from natural gas infrastructure value chain is still largely inadequate. Several studies have repeatedly opined that the actual rate of leaks from natural gas infrastructure is often higher than the documented estimates. The latter is largely dependent on assumptions that rely on inadequate data. This study reviewed most of the existing methods implemented to detect and quantify gas leaks in natural gas infrastructure by assessing the techniques based on the amount of leak detected compared to the amount of gas produced from such facilities. The study illustrates both the problem of methane leakage and the opportunities for instantaneous reduction from natural gas transmission facilities. Furthermore, this review provides a detailed account of the various analytical models and instrumentation-based research performed to identify and quantify gas leak detection. The study opined that the uncertainties associated with efficient quantification of natural gas leak rates demonstrate the need for innovative approaches or processes to identify and quantify leak rates from natural gas infrastructure.


2021 ◽  
Author(s):  
Eric Saboya ◽  
Giulia Zazzeri ◽  
Heather Graven ◽  
Alistair J. Manning ◽  
Sylvia Englund Michel

Abstract. Assessment of bottom-up greenhouse gas emissions estimates through independent methods is needed to demonstrate whether reported values are accurate or if bottom-up methodologies need to be refined. We report atmospheric methane (CH4) mole fractions and δ13CH4 measurements from Imperial College London since early 2018 using a Picarro G2201-i analyser. Measurements from March 2018 to October 2020 were compared to simulations of CH4 mole fractions and δ13CH4 produced using the NAME dispersion model coupled with the UK National Atmospheric Emissions Inventory, UK NAEI, and the global inventory, EDGAR, with model spatial resolutions of ~2 km, ~10 km, and ~25 km. Observed mole fractions were underestimated by 30–35 % in the NAEI simulations. In contrast, a good correspondence between observations and EDGAR simulations was seen. There was no correlation between the measured and simulated δ13CH4 values for either NAEI or EDGAR, however, suggesting the inventories’ sectoral attributions are incorrect. On average, natural gas sources accounted for 20–28 % of the above background CH4 in the NAEI simulations, and only 6–9 % in the EDGAR simulations. In contrast, nearly 84 % of isotopic source values calculated by Keeling plot analysis (using measurement data from the afternoon) of individual pollution events were higher than −45 ‰, suggesting the primary CH4 sources in London are actually natural gas leaks. The simulation-observation comparison of CH4 mole fractions suggests that total emissions in London are much higher than the NAEI estimate (0.04 Tg CH4 yr−1) but close to, or slightly lower than the EDGAR estimate (0.10 Tg CH4 yr−1). However, the simulation-observation comparison of δ13CH4 and the Keeling plot results indicate that emissions due to natural gas leaks in London are being underestimated in both the UK NAEI and EDGAR.


2017 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
Andrew R. Kear

Natural gas is an increasingly vital U.S. energy source that is presently being tapped and transported across state and international boundaries. Controversy engulfs natural gas, from the hydraulic fracturing process used to liberate it from massive, gas-laden Appalachian shale deposits, to the permitting and construction of new interstate pipelines bringing it to markets. This case explores the controversy flowing from the proposed 256-mile-long interstate Nexus pipeline transecting northern Ohio, southeastern Michigan and terminating at the Dawn Hub in Ontario, Canada. As the lead agency regulating and permitting interstate pipelines, the Federal Energy Regulatory Commission is also tasked with mitigating environmental risks through the 1969 National Environmental Policy Act's Environmental Impact Statement process. Pipeline opponents assert that a captured federal agency ignores public and scientific input, inadequately addresses public health and safety risks, preempts local control, and wields eminent domain powers at the expense of landowners, cities, and everyone in the pipeline path. Proponents counter that pipelines are the safest means of transporting domestically abundant, cleaner burning, affordable gas to markets that will boost local and regional economies and serve the public good. Debates over what constitutes the public good are only one set in a long list of contentious issues including pipeline safety, proposed routes, property rights, public voice, and questions over the scientific and democratic validity of the Environmental Impact Statement process. The Nexus pipeline provides a sobering example that simple energy policy solutions and compromise are elusive—effectively fueling greater conflict as the natural gas industry booms.


1995 ◽  
Vol 5 (1-2) ◽  
pp. 39-52 ◽  
Author(s):  
Jeffrey R. Hufton ◽  
Douglas M. Ruthven ◽  
Ronald P. Danner

Energy Policy ◽  
2021 ◽  
Vol 156 ◽  
pp. 112379
Author(s):  
Jacob D. Hileman ◽  
Mario Angst ◽  
Tyler A. Scott ◽  
Emma Sundström

Sign in / Sign up

Export Citation Format

Share Document